DRAFT

Limited Phase II Environmental Site Assessment Report

Polopolus Eastvale 7270 Hamner Avenue Eastvale, California APN 152-060-003

CONVERSE Project No. 17-16-130-01 May 5, 2017

Prepared For:

Lewis Retail Centers 1156 North Mountain Avenue Upland, California

Prepared By:

CONVERSE CONSULTANTS 2021 Rancho Road, Suite 1 Redlands, California 92373

DRAFT May 5, 2017

Mr. Rick Manners VP Retail Centers Lewis Retail Centers 1156 North Mountain Avenue Upland, California 91786

Subject: LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Polopolus Eastvale 7270 Hamner Avenue Eastvale, California

Converse Project No. 17-16-130-01

Mr. Manners:

Converse Consultants (Converse) is pleased to submit the attached report that summarizes the activities and the results of a *Limited Phase II Environmental Site Assessment (Phase II ESA)* that was conducted at the referenced property.

We appreciate the opportunity to be of service. Should you have any questions or comments regarding this report, please contact Michael Van Fleet at (626) 930-1267 or Norman Eke at (626) 930-1260.

CONVERSE CONSULTANTS

DRAFT DRAFT

Michael Van Fleet, PG
Senior Geologist
Norman Eke
Managing Officer/Senior Vice President

Dist.: 1/Addressee via Electronic Mail (PDF Format)

Table of Contents

		<u>F</u>	Page
EXEC	CUTIVE	SUMMARY	III
1.0	INTRO	DDUCTION	1
2.0		GROUND	
2.0			
	2.1	Site Description and Features	
		2.1.2 Location and Legal Description	
		2.1.3 Site and Vicinity General Characteristics	
	2.2	Physical Setting	
	۷.۷	2.2.1 Topography	
		2.2.2 Geology	
		2.2.3 Hydrogeology	3
	2.3	Site History and Land Use	3
	2.4	Adjacent Property Land Use	4
	2.5	Summary of Previous Assessment Reports	4
3.0	WORK PERFORMED AND RATIONALE10		
	3.1	Scope of Assessment	10
		3.1.1 Target Analytes	
		3.1.2 Target Analytes First Entered the Environment	10
		3.1.3 Environmental Media and Locations Most Likely to Have the Highest Concentrations of Target Analytes	10
	3.2	Sample Collection	11
		3.2.1 Soil Samples	11
		3.2.2 Soil Vapor Samples	12
	3.3	Transite Irrigation Pipe Trenching	12
	3.4	Field Quality Assurance/Quality Control	13
	3.5	Chemical Analytical Methods	13
4.0	PRESENTATION AND EVALUATION OF RESULTS		
	4.1	Subsurface Conditions	15
	4.2	Analytical Results	15
		4.2.1 Soil Samples	15
		4.2.2 Soil Vapor Samples	16

	4.3	Data Quality Assurance/Quality Control	17
		4.3.1 Hold Times	17
		4.3.2 Laboratory Quality Assurance	
		4.3.3 Method Reporting Limits	17
5.0	INTERPRETATION AND CONCLUSIONS		
	5.1	RECs and Potential Release Area(s)	18
	5.2	Conceptual Model Validation/Adequacy of Investigations	19
	5.3	Absence, Presence, Degree, Extent of Target Analytes	
	5.4	Other Concerns	20
		5.4.1 Significant Assumptions	20
		5.4.2 Limitations and Exceptions	20
		5.4.3 Special Terms and Conditions	20
	5.5	Conclusions/Objectives Met	20
6.0	REC	OMMENDATIONS	
7.0	RELI	ELIANCE2	
8.0	REFERENCES AND SOURCES OF INFORMATION25		

FIGURES

Figure 1 – Site Location Map

Figure 2 – Site Plan

Figure 3A-3C – Sample Location Maps

Figure 4 – Trenching Location Map

TABLES

Table 1 – Summary of Analytical Results – Metals and OCPs in Soil

Table 2 – Summary of Analytical Results – TPH and VOCs in Soil

Table 3 – Summary of Analytical Results – VOCs in Soil Vapor

<u>APPENDICES</u>

Appendix A – Boring Logs

Appendix B – Laboratory Analytical Reports

Executive Summary

The following is an Executive Summary of the Limited Phase II Environmental Site Assessment (ESA) that was conducted by Converse Consultants (Converse). Please refer to the appropriate sections of the report for a complete discussion of these issues. In the event of a conflict between this Executive Summary and the report, or an omission in the Executive Summary, the report shall prevail.

This Report presents the results of the Converse Consultants (Converse) *Limited Phase II Environmental Site Assessment (ESA)* that was performed at the Polopolus Eastvale Property (also known as the former Granada Wholesale Nursery) located at 7270 Hamner Avenue in the City of Eastvale, Riverside County, California. The entire Polopolus property will be referred to as the Site in this report. Converse was retained by Lewis Retail Centers (*User*) to conduct the *Limited Phase II ESA* at the Site with the following objectives:

- 1. Further evaluate the hydrocarbon impacted soil and/or soil vapor in the vicinity of the previously identified spilled drum and dilapidated pool areas;
- 2. Evaluate the potential presence of OCPs and arsenic in the surface and shallow subsurface soil associated with the onsite mixing and storing of pesticides;
- 3. Evaluate former agricultural use areas for the potential presence of buried transite irrigation pipes;
- 4. Evaluate potential areas of stained soil in the former location of smudge pot storage for impacts from total petroleum hydrocarbons (TPH); and
- 5. Identify if potential target analytes are present at concentrations greater than threshold criteria.

Converse conducted a Phase I ESA for the Site, the results of which are documented in a *Phase I ESA Report* (Converse, May 14, 2014). The *Phase I ESA Report* identified several Recognized Environmental Conditions (RECs) in connection with the Site and recommended further assessment.

Converse conducted a Limited Phase II ESA for the Site, the results of which are documented in a *Limited Phase II ESA Report* (Converse, June 6, 2014). Based upon the results of the investigation, Converse concluded the following:

• The organochlorine pesticides (OCPs) chlordane, DDE, and DDT were detected in 2 of the 6 agricultural samples analyzed, but all concentrations are less than their respective RSL-r screening levels. Arsenic was detected in all of the agricultural samples analyzed at concentrations that are considered to be naturally occurring background levels which are less than the screening level of 12 milligrams per kilogram (mg/kg) used by the Department of Toxic Substances Control (DTSC) for school sites based on naturally occurring background concentrations.

• In the vicinity of the maintenance barn, stained soil, filled pit, above ground storage tanks (ASTs), drum storage, and suspect historic underground storage tank (UST) areas all reported concentrations of metals, and volatile organic compounds (VOCs) in soil were less than their respective regional screening level values for residential land use (RSL-r), with the exception of arsenic. However, all reported arsenic concentrations are considered to be naturally occurring background levels which are less than the DTSC screening level of 12 mg/kg. Total petroleum hydrocarbons (TPH) in the gasoline range were not detected in any of the soil samples.

In the vicinity of the stained soil near the dilapidated pool (boring location MB1) TPH was reported at relatively low concentrations in the diesel and oil range in the sample from 2 feet bgs, but were not detected in the sample from 4 feet bgs. No VOCs were detected in the soil vapor samples from this location.

In the vicinity of a spilled drum on the north side of the maintenance barn (boring location MB5) TPH was reported at relatively low concentrations in the diesel and oil ranges in the sample from 2 feet below ground surface (bgs), at a moderately elevated level in the oil range in the sample from 4 feet bgs, but were not detected in the sample from 8 feet bgs. Concentrations of TPH in the gasoline range in soil vapor samples from 5 and 15 feet bgs were slightly less than their screening level at this location. Naphthalene was detected in the soil vapor sample from 5 feet bgs at location MB5 in excess of the screening level, but the concentration of naphthalene in the 15-foot sample, and all other VOCs in both soil vapor samples were less than their respective screening levels.

- Soil samples collected from the undocumented fill on the Site were reported to not contain any concentrations of TPH, VOCs, or chlorinated herbicides (CHs). Reported concentrations of the OCPs DDE, DDT, dieldrin and endrin aldehyde, as well as all detected metals, were all less than their respective RSL-r values.
- The geophysical survey conducted in the vicinity of the maintenance barn and breezeway areas did not reveal the presence of any USTs, or suspect former USTs excavation areas. However, one (1) small electromagnetic (EM) anomaly and several discontinuous unknown lines were detected on the east side of the maintenance barn in the vicinity of boring MB2.
- None of the 21 soil vapor probes at 12 locations across the Site had any detectable concentrations of methane, and no buildup of pressure was noted.
- The client elected to not have the assessment for potential buried transite irrigation pipes completed at this time, electing to instead have it completed during site development activities.

Converse recommended that TPH-impacted and stained soils in the vicinity of boring locations MB1 and MB5 be excavated and properly disposed to an offsite facility. Converse also noted that it is possible that USTs may still be present on the Site at

locations outside of the area assessed, and recommended that contingency be added to the development plans for the Site.

A Phase I ESA was conducted on the site by Rincon Consultants the results of which are documented in a *Phase I ESA Report*, dated August 6, 2015. The Rincon report did not identify any RECs that weren't previously identified in the Converse Phase I ESA. However, supplemental investigation was recommended to further evaluate some of the previously identified items.

This Limited Phase II ESA included the following primary tasks:

- Five (5) borings (MB1A-MB1E) were collected in the vicinity of the dilapidated pool area (former boring location MB1) to a maximum depth of 8 feet bgs with soils samples collected at 2, 4, 6 and 8 feet bgs.
- Five (5) borings (MB5A-MB5E) were completed in the vicinity of the of the spilled drum area (former boring location MB5) to a depth of 16 feet bgs with soil samples collected from depths of 2, 4, 8, 12 and 16 feet bgs, and soil vapor samples collected at 5 and 15 feet bgs.
- Five (5) borings (AG-25 to AG-29) were completed in the vicinity of the pesticide mixing/storage areas to a depth of 8 feet bgs with soil samples collected at 2, 4, 6 and 8 feet bgs.
- One (1) boring (S-1) was completed in the vicinity of observable stained oil areas with soil samples collected at 2, 4, 6 and 8 feet bgs.
- Six (6) borings (SV-1 through SV-6) were completed across the Site to evaluate for potential impacts of 1,3-butadiene, with soil vapor samples collected at 5 or 12 feet bgs.
- Exploratory excavation in former agricultural use areas was conducted for the potential presence of buried transite irrigation pipes. A back hoe was used to excavate to a maximum of 5 feet bgs in various locations throughout the site (T1-T13), in areas of former agricultural use.
- Laboratory Analysis of Samples: Soil samples from 2, 4 and/or 8 and 16 feet bgs were analyzed for TPH and VOCs in the vicinity of the dilapidated pool (MB1) and observable stained soil (S1) areas, the soil samples from 2, 4, and/or 8 feet bgs in the maintenance barn (MB5) borings were analyzed for VOCs, and TPH, and the agricultural use (AG) soil samples were analyzed for OCPs and metals. Soil vapor samples collected from the MB5 borings, and SV1 through SV6, were analyzed for VOCs, with the samples from the MB5 borings also being analyzed for oxygenates and total petroleum hydrocarbons in the gasoline range.

Based upon the results of the investigation, Converse has concluded the following:

- No concentrations of VOCs, OCPs or TPH in the gasoline range were reported in any of samples analyzed.
- Transite piping was not discovered during exploratory trenching activities.

- Arsenic was detected in all of the samples analyzed at concentrations greater than the RSL-r, but that are less than the DTSC screening level of 12 mg/kg considered to be representative of naturally occurring background concentrations.
- TPH in the diesel and/or heavy oil ranges was reported in soil samples in the vicinity of stained soil around the swimming pool and a 5-gallon bucket. The concentrations are less than the MSSLs which are protective of groundwater. However, some of the heavy oil range concentrations exceed the RSL-r screening level value.
- A total of 37 VOCs, as well as gasoline range TPH, were detected in the soil vapor samples analyzed. With the exception of 1,3-butadine, all reported compound concentrations in the soil vapor samples are less than their respective soil vapor screening levels for a residential land use scenario. The maximum concentration of 1,3-butadiene is less than the screening level for commercial land use.

It is noted that occurrence of 1,3-butadiene, which is commonly associated with the manufacturing of rubber and as a product of combustion, is not believed to be associated with historic onsite uses of the Site. Based on discussions with knowledgeable laboratory and DSTC personnel who have experience with this compound, it is suspected that the likely source is the Nylaflow tubing used in the construction of the soil vapor probes. Therefore, the reported concentrations of this compound are considered to likely be anomalous artifacts of the sampling process, and not attributable to the subsurface conditions beneath the Site. Further, the proposed redevelopment plan for the Site will include significant grading and compaction of soils that would result in a reduction of the risk posed by this compound, if present.

Converse recommends that stained soils impacted with TPH be excavated and properly disposed of to an offsite facility. Based on the results of this assessment it is assumed that approximately 30 cubic yards of soil in the vicinity of the swimming pool will require removal. Any additional stained or odorous soil identified during site redevelopment activities should also be appropriately removed and disposed of.

Although the previously conducted geophysical survey did not reveal the presence of any USTs, there is a possibility that USTs may still be present on the Site. It is recommended that contingency be added to the development plans for the Site to deal with any USTs or subsurface features that may potentially be encountered during Site redevelopment.

1.0 Introduction

This Report presents the results of the Converse Consultants (Converse) *Limited Phase II Environmental Site Assessment (ESA)* that was performed at the Polopolus Eastvale Property located at 7270 Hamner Avenue in the City of Eastvale, Riverside County, California. The entire Polopolus property will be referred to as the Site in this report. The location of the Site is indicated on Figure 1, Property Location Map, and the general layout of the Site is Shown on Figure 2, Site Plan. Converse was retained by Lewis Retail Centers (*User*) to conduct the *Limited Phase II ESA* at the Site. The scope of this *Limited Phase II ESA* was completed in accordance with the proposal prepared by Converse, dated April 11, 2017.

Converse generally followed the standard practices of the American Society for Testing Materials (ASTM) Designation: E1903-11 Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11). The purpose of conducting the Phase II ESA in accordance with ASTM E1903-11 is to acquire and evaluate information sufficient to achieve the objective(s) set forth in the "Statement of Objectives" developed by the User and Converse. The objectives of the assessment were to:

- 1. Further evaluate the hydrocarbon impacted soil and/or soil vapor in the vicinity of the previously identified spilled drum and dilapidated pool areas;
- 2. Evaluate the potential presence of OCPs and arsenic in the surface and shallow subsurface soil associated with the onsite mixing and storing of pesticides;
- 3. Evaluate former agricultural use areas for the potential presence of buried transite irrigation pipes;
- 4. Evaluate potential areas of stained soil in the former location of smudge pot storage for impacts from total petroleum hydrocarbons (TPH); and
- 5. Identify if potential target analytes are present at concentrations greater than threshold criteria.

2.0 Background

In 2014 Converse completed a Phase I ESA and a Limited Phase II ESA on the Site, dated May 14, 2014 and June 6, 2014, respectively. A majority of the details contained within this section were taken from these ESA reports.

2.1 Site Description and Features

2.1.1 Current Uses of the Site

The Site is owned and managed by The Steve and Diana Polopolus, LLC, and the 2004 Polopolus Family Trust and is utilized as a single-family residence. Remnants of the former nursery including a commercial sales office, three garage buildings, a maintenance shop, multiple storage sheds, dilapidated greenhouses, an empty below-ground pool, and vacant plant and tree storage areas was observed.

2.1.2 Location and Legal Description

The Site is located at 7270 Hamner Avenue, south of the intersection of Schleisman Road and Hamner Avenue in the City of Eastvale, Riverside County, California. The Site is located approximately ¼-miles west of Interstate 15 (Ontario Freeway).

The Site is identified as Riverside County Assessor's Parcel Number 152-060-003.

2.1.3 Site and Vicinity General Characteristics

The general vicinity of the Site appears to be primarily residential dwellings to the north, east, and west, and the Silver Lakes Sports Complex to the south.

2.2 Physical Setting

2.2.1 Topography

The Site is located approximately 626 feet above mean sea level (amsl) with surface topography sloping towards the south-southeast (United States Geological Survey [USGS] Topographic Map, Corona North, California, 1981).

2.2.2 Geology

According to the California Department of Conservation 2010 Geologic Map of California, the western portion of the Site is underlain by mostly older alluvium, lake, playa, and terrace deposits (Qoa), while the eastern portion of the Site is underlain by mostly nonmarine unconsolidated and semi-consolidated alluvium, lake, playa, and terrace deposits (Q).

Soils encountered during our investigations generally consisted of Clayey sand and clayey silt underlain by fine grained sands with varying amounts of clay to the maximum depths explored of 16 feet below ground surface (bgs). See Appendix A for a copy of the boring logs.

2.2.3 Hydrogeology

According to the Western Municipal Water District, Cooperative Well Measuring Program, Spring 2013 Data, the nearest well with data (State Well ID# 02S/07W-36J; Jurupa Community Services District Van Leeuwen) is located approximately ½-mile west of the Site. On April 10, 2013 the depth to groundwater in this well was measured at 11.9 feet bgs, which corresponds to an elevation of approximately 578 feet amsl. Based on this elevation, the depth to water beneath the Site would be approximately 48 feet bgs.

No site specific groundwater flow information was available, however, according to the Chino Basin Depth to Groundwater Contour Map dated 2006, groundwater generally flows toward the Santa Ana River, which is located to the south of the Site.

2.3 Site History and Land Use

According to the Converse Phase I ESA, the Site appeared to have been undeveloped land as early as 1931. By 1938, the Site appeared to be occupied by agricultural fields. By 1953, the north central portion of the Site appeared to be redeveloped with a residential dwelling and a barn. By 1960, the south central portion of the Site appeared to be vacant land. By 1967, the northwest portion of the Site appeared to be redeveloped with a commercial structure for nursery operations. Horticulture storage was observed around the residential structure and barns, and the remainder of the Site appeared to be vacant land. Between 1977 and 2006, nursery operations and horticulture storage appeared to increase across the Site to include the construction of greenhouses near the residential structure. By 2012, the Site appeared to be a vacant nursery in the same general configuration as observed during the implementation of field activities in May, 2014, and April, 2017.

2.4 Adjacent Property Land Use

The following was observed during Converse's 2017 field activities.

Direction	Current Development	
North:	Single-family residential dwellings	
Northeast:	Single-family residential dwellings	
Northwest: Hamner Avenue, followed by vacant land		
South:	The Silver Lakes Sports Complex	
Southeast	The Silver Lakes Sports Complex	
Southwest:	Hamner Avenue followed by single family residential dwellings	
East:	Single-family residential dwellings	
West:	Hamner Avenue followed by vacant land and single family residential dwellings	

2.5 Summary of Previous Assessment Reports

A Phase I ESA report, dated May 14, 2014, was prepared by Converse for William Lyon Homes, Inc. The assessment revealed that there were Recognized Environmental Conditions (RECs) in connection with the subject property, and Converse had the following conclusions and recommendations:

- The Site was historically used for agriculture from as early as 1938 until at least 1960, and as a wholesale nursery from as early as 1967 until at least 2010. Converse recommends further assessment of the subsurface of the Site.
- The Site was historically occupied by underground storage tanks (USTs) and aboveground storage tanks (ASTs) used for fueling operations from as early as 1962. The USTs were removed after 1972 and again after 1987. No regulatory closure was issued to the Site. Furthermore, no discernible secondary containment was observed around the ASTs. Converse recommends further assessment of the subsurface.
- The maintenance barn on the Site was formerly used as an automotive repair facility consisting of an "auto repair bay/hole" which has been subsequently filled with dirt. Converse recommends further assessment of the subsurface within and surrounding the maintenance barn.
- Several fill piles and a mound of soil near the garages was observed

- during the Site reconnaissance in May 2014. The origins of the soil were not disclosed to Converse. Converse recommends further environmental screening by soil analysis for either re-use or disposal.
- Several 55-gallon drums, smudge pots, ASTs, miscellaneous hazardous materials and piles of debris were observed on the Site during the reconnaissance in May 2014. Converse recommends the removal of the drums, ASTs, smudge pots, miscellaneous hazardous materials and debris piles according to applicable regulations. Converse further recommends the monitoring of the removal for staining, malodors and/or hidden features of concern (i.e. additional drums or chemical containers) beneath the drums and debris piles. Further assessment may be warranted if items of concern are discovered during the removal operations.
- Converse observed a large stained area near the dilapidated pool during the Site reconnaissance in May 2014. Converse recommends the excavation and disposal of the soil in accordance with applicable regulations. Converse further recommends the collection of confirmation soil samples at the conclusion of the soil excavation.
- The Site lies within an area of Riverside County with a potential for significant methane production. Converse recommends the completion of a methane survey on the Site in general accordance with the protocol established by the RCDEH.
- Converse recommends the abandonment of the septic system and cistern type septic system on the Site prior to redevelopment of the Site according to applicable regulations.

Converse conducted a Phase II ESA on the Site for William Lyon Homes Inc., the results of which are documented in a *Limited Phase I ESA Report* (Converse, June 6, 2014). The Limited Phase II ESA included the following primary tasks:

- Completing a geophysical survey in the vicinity of the maintenance barn to evaluate for the potential presence of below ground anomalies (USTs) and/or former excavated areas.
- Twenty-four (24) borings (AG-1 through AG-24) were completed to approximately 2.5 feet bgs in a grid-like pattern across the Site, and soil samples were collected from each of the borings at approximately 0.5 and 2 feet bgs to assess for potential impacts from historic agricultural uses.
- Grab samples were collected from 16 locations (USM-1 through USM-16) in the vicinity of undocumented soil mounds. Soil samples were collected either from the surface or at a depth of 4 feet bgs.
- Five (5) borings (MB-1 through MB-5) were completed in the vicinity of the

- maintenance barn and spill area to depths of 16 feet bgs with soil samples collected from depths of 2, 4, 8, 12, and 16 feet bgs, and soil vapor samples collected from 5 and 15 feet bgs.
- Four (4) borings (AST/D-1 through AST/D-4) were completed in the vicinity of the AST and drum storage areas to depths of 8 feet bgs with soil samples collected from depths of 2, 4, and 8 feet bgs, and soil vapor samples collected from 5 feet bgs (except at location AST/D-4).
- Four (4) borings (CH4-1 through CH4-4) were completed across the Site away from other soil vapor sample locations with soil vapor probes set at depths of 5 and 15 feet to assess for methane.
- Laboratory Analysis of Samples: Soil samples from 0.5 feet bgs in the AG borings were analyzed for organochlorine pesticides (OCPs) and/or arsenic, the soil samples from 2, 4, and/or 8 feet bgs in the MB and AST/D borings were analyzed for metals, volatile organic compounds (VOCs), and total petroleum hydrocarbons (TPH), and the USM soil samples were analyzed for OCPs, chlorinated herbicides (CHs), metals, and TPH. Soil vapor samples collected from the MB and AST/D borings were analyzed for VOCs, and all soil vapor probes were monitored in the field for pressure and methane.

Based upon the results of the investigation, Converse concluded the following:

- The OPCs chlordane, DDE, and DDT were detected in 2 of the 6 agricultural samples analyzed, but all concentrations are less than their respective regional screening level values for residential land use (RSL-r). Arsenic was detected in all of the agricultural samples analyzed at concentrations that are less than the screening level of 12 milligrams per kilogram (mg/kg) used by the Department of Toxic Substances Control (DTSC) for school sites based on naturally occurring background concentrations.
- In the vicinity of the maintenance barn, stained soil, filled pit, ASTs, drum storage, and suspect historic USTs areas all reported concentrations of metals, and VOCs in soil were less than their respective RSL-r screening levels, with the exception of arsenic. However, all reported arsenic concentrations are considered to be naturally occurring background levels which are less than the DTSC screening level of 12 mg/kg. TPH in the gasoline range was not detected in any of the soil samples.
 - In the vicinity of the stained soil near the dilapidated pool (boring location MB1) TPH was reported at relatively low concentrations in the diesel and oil range in the sample from 2 feet bgs, but were not detected in the sample from 4 feet bgs. No VOCs were detected in the soil vapor samples from this location.

In the vicinity of a spilled drum on the north side of the maintenance barn (boring location MB5) TPH was reported at relatively low concentrations in the diesel and oil ranges in the sample from 2 feet bgs, at a moderately elevated level in the oil range in the sample from 4 feet bgs, but were not detected in the sample from 8 feet bgs. Concentrations of TPH in the gasoline range in soil vapor samples from 5 and 15 feet bgs were slightly less than their screening level at this location. Naphthalene was detected in the soil vapor sample from 5 feet bgs at location MB5 in excess of the screening level, but the concentration of naphthalene in the 15-foot sample, and all other VOCs in both soil vapor samples were less than their respective screening levels.

- Soil samples collected from the undocumented fill on the Site were reported to not contain any concentrations of TPH, VOCs, or CHs. Reported concentrations of the OCPs DDE, DDT, dieldrin and endrin aldehyde, as well as all detected metals, were all less than their respective RSL-r values.
- The geophysical survey conducted in the vicinity of the maintenance barn and breezeway areas did not reveal the presence of any USTs, or suspect former USTs excavation areas. However, one (1) small electromagnetic (EM) anomaly and several discontinuous unknown lines were detected on the east side of the maintenance barn in the vicinity of boring MB2.
- None of the 21 soil vapor probes at 12 locations across the Site had any detectable concentrations of methane, and no buildup of pressure was noted.
- The client elected to not have the assessment for potential buried transite irrigation pipes completed at this time, electing to instead have it completed during site development activities.

Converse recommended that TPH-impacted and stained soils in the vicinity of boring locations MB1 and MB5 be excavated and properly disposed to an offsite facility. Based on the results of this assessment it is assumed that the excavations in the vicinity of boring location MB1 should extend to a maximum depth of approximately 2 feet bgs, and to between 5 and 15 feet bgs in the vicinity of boring location MB5.

Converse also noted that although the geophysical survey which was conducted within approximately 20 feet of the perimeter of the maintenance barn and breezeway areas did not reveal the presence of any USTs, it is possible that USTs may still be present on the Site at locations outside of the area assessed. It was recommended that contingency be added to the development plans for the Site to deal with the EM anomaly and discontinuous lines that were detected during the geophysical survey, and USTs potentially located beyond the assessment area.

A Phase I ESA was Conducted on the Site by Rincon Consultants the results of which are documented in a Phase I ESA Report, dated August 6, 2015. Based on their findings Rincon recommended the following:

- Geophysical survey of the site to identify the former UST locations, and soil sampling in the vicinity of the former USTs.
- Removal of anomalies detected during the 2014 geophysical survey, and soil sampling in the vicinity of the anomalies if warranted.
- Removal of hydrocarbon impacted soil in the vicinity of the spilled drum area and dilapidated pool area. In addition, confirmation soil samples should be collected following excavation.
- Soil sampling in the vicinity of the transite pipe in the agricultural fields.
- Soil sampling in the vicinity of former smudge pots.
- Additional soil sampling in the vicinity of the fill material on the southeastern portion of the subject property.
- Additional soil sampling of the onsite soil piles.
- Additional soil sampling in the vicinity of the stained soil observed adjacent to the onsite groundwater well.
- Additional soil sampling for pesticides in storage/mixing areas including the maintenance barn, sheds, greenhouses and other storage facilities.
- Additional soil sampling in the vicinity of the septic system and cistern-type septic system on the subject property as well as the abandonment of the systems prior to redevelopment.

Converse presents the following opinions with regard to the recommendations presented in the Rincon Phase I ESA:

- Converse previously oversaw the completion of a geophysical survey in the suspected area of the former USTs, and the results were inconclusive with regard to the presence of USTs or their former locations. Soil sampling in these areas was also previously conducted. It is our opinion that conducting an additional geophysical survey prior to the demolition of structures and removal of debris/materials that interfere with the survey instruments will again be inconclusive.
- Converse previously recommended that the anomalies detected during the 2014 geophysical survey should be removed. It is agreed that additional soil sampling should be conducted in the vicinity of the anomalies, if warranted, at the time of removal.

- Converse previously recommended that hydrocarbon impacted soil in the vicinity of the spilled drum area and dilapidated pool area should be removed, and Converse agrees that confirmation soil samples should be collected following excavation. Converse recommends conducting additional sampling in the vicinity of these areas to try and further delineate the extents of impacted soil, and estimate a volume of soil to be removed.
- Converse notes that the presence of transite pipe onsite has not been confirmed, so it is premature to recommend sampling at this time. Converse recommends implementing our previously proposed scope to oversee exploratory excavation in the former agricultural use areas for the potential presence of buried transite irrigation pipes.
- Converse noted in 2014 that smudge pots were present onsite, and that
 only minor staining of the soil was observed in their vicinity. Converse had
 recommended that the smudge pots be removed, and that samples of
 stained soil be collected at that time. Rincon reported in 2015 that the
 smudge pots were no longer present, and did not note any stained soil.
 Converse recommends collecting soil samples if stained soil is identified in
 the vicinity of the former smudge pot locations.
- It is the opinion of Converse that the fill material and onsite soil piles were sufficiently screened during the prior Phase II ESA, and based on the lack of significant impacts identified, no further testing is required.
- Converse identified oil staining on the pump and motor of an onsite water well, but neither Converse or Rincon reported any stained soil in the vicinity of the wells. Therefore, soil sampling in the vicinity of onsite groundwater wells does not appear to be warranted.
- Converse previously assessed the greenhouses and former agricultural use areas and for pesticides use. However, areas where pesticides were potentially stored or mixed, such as the maintenance barn, sheds, and other storage facilities, were not assessed. Converse recommends assessing these areas for potential impacts from pesticides.

Converse previously recommended that the septic system and cistern-type septic system on the subject property be abandoned according to applicable regulations. It is suspected that soil sampling would only be required at that time if signs of potential contamination are observed.

3.0 Work Performed and Rationale

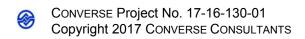
3.1 Scope of Assessment

A conceptual model was developed based on data obtained from previous assessments performed at the Site.

3.1.1 Target Analytes

The results of the Phase I and Phase II ESAs for the Site and review of available reports and correspondence regarding the Site indicate potential for impacts from TPH, VOCs, OCPs, and metals.

3.1.2 Target Analytes First Entered the Environment


The results of the Phase I and Phase II ESAs for the Site and review of available reports and correspondence regarding the Site indicate that the target analytes would have first entered the environment by surface spills or releases to the surface and subsurface soil.

3.1.3 Environmental Media and Locations Most Likely to Have the Highest Concentrations of Target Analytes

Environmental media most likely to have been impacted by target analytes are soil and/or soil vapor in the vicinity of where drums and tanks were stored, around the maintenance barn, where pesticides were stored and/or mixed, and where staining was observed.

This Limited Phase II ESA consisted of the following primary elements:

- Advancing borings in the vicinity of the dilapidated pool area (MB1A-MB1E), the spilled drum area (MB5A-MB5E), additional pesticide mixing/storage areas not previously assessed (AG-25 to AG-29), observable stained oil areas (S-1), and across the Site to evaluate for potential impacts of 1,3-butadiene (SV-1 through SV-6). Soil and/or soil vapor samples were collected from each boring.
- Laboratory analysis of soil and soil vapor samples for VOCs, TPH, OCPs, and/or metals.
- Exploratory excavation in former agricultural use areas was conducted for the potential presence of buried transite irrigation pipes. A back hoe was used to excavate to a maximum of 5 feet bgs in various locations throughout the site (T1-T13), in areas of former agricultural use.

3.2 Sample Collection

3.2.1 Soil Samples

On April 12, 2017 a truck-mounted Geoprobe (direct-push) rig operated by Interphase Environmental was used to complete boring across the Site using dual-tube drilling methods. Boring locations are indicated on Figures 3A, 3B, and 3C. A Converse geologist oversaw the drilling, sample collection, and preparation of boring logs. Borings were completed as follows:

- Five (5) soil borings (MB1A-MB1E) were collected in the vicinity of the dilapidated pool area (around former boring location MB1) to a maximum depth of 8 feet bgs with soils samples collected at 2, 4, 6 and 8 feet bgs.
- Five (5) soil borings (MB5A-MB5E) were completed in the vicinity of the spilled drum area (around former boring location MB5) to a depth of 16 feet bgs with soil samples collected from depths of 2, 4, 8, 12 and 16 feet bgs and soil vapor samples collected at 5 and 15 feet bgs.
- Five (5) soil borings (AG-25 to AG-29) were completed in the vicinity of additional pesticide mixing/storage areas not previously assessed, to a depth of 8 feet bgs with soil samples collected at 2, 4, 6 and 8 feet bgs.
- One (1) soil boring (S-1) was completed in the vicinity of observed stained soil around a 5-gallon bucket with soil samples collected at 2, 4, 6 and 8 feet bgs.
- Six (6) borings (SV-1 through SV-6) were completed across the Site to evaluate for potential impacts of 1,3-butadiene, with soil vapor samples collected at 5 or 12 feet bgs.

Subsamples of soil for VOC analysis were collected from select soil samples in accordance with EPA Method 5035 using EnCore sample containers. A portion of the samples from select borings were also transferred into sealable plastic bags for lithologic evaluation and were screened in the field for VOCs using a photo ionization detector (PID); all readings were less than the detection limit of the instrument.

The ends of the soil sample sleeves were covered with Teflon sheets and fitted with plastic end caps. The sample containers were labeled, and stored in a chilled container pending transport to the laboratory.

3.2.2 Soil Vapor Samples

After soil sample collection, soil vapor probes were installed in each of the MB5A – MB5E borings at a depths of 5 and 15 feet bgs. The lower portion of the boreholes were initially sealed with hydrated bentonite from 16 feet up to 15 feet bgs. Six (6)-inch long porous probes, connected to Nylaflow tubing, were then inserted into the borings, and an approximate 1 foot sand pack was then placed around and slightly above the probes. The boreholes were then sealed up to approximately 5.5 feet bgs with hydrated bentonite where a probe was installed in a similar manner, and then the remainder of the borehole was backfilled with hydrated bentonite to ground surface. Due to a mixup with the laboratory, probes were reinstalled and sampled at locations MB5C – MBE on April 21, 2017. On May 1, 2017 additional soil vapor probes were installed in a similar manner at six (6) locations across the Site (SV-1 through SV-6) at depths of 5 or 12 feet bgs.

Subsurface conditions were allowed to re-equilibrate for a minimum period of 2 hours prior to sample collection. Approximately 1 to 1.5 liters of air was purged from each probe prior to sample collection. A shut-in test was then conducted to check for leaks in the above ground fittings. A tracer gas mixture of n-propanol and n-pentane was placed at the tubing-surface interface for select samples to evaluate for leaks during sample collection. Neither n-propanol nor n-pentane was reported in any of the samples analyzed. Samples were collected in 1-liter summa canisters and transported to an offsite laboratory for analysis. The rate at which tubing was purged and samples were collected was approximately 200 milliliters per minute. Following the collection of the soil vapor samples, the sample points were abandoned by pulling the tubing from the boreholes.

3.3 Transite Irrigation Pipe Trenching

On April 18, 2017, exploratory excavation in former agricultural use areas was conducted for the potential presence of buried transite irrigation pipes. A backhoe was used to excavate to a maximum of 5 feet bgs in various locations throughout the site (T1-T13), in areas of former agricultural use. Trenching locations are indicated on Figure 4.

Transite pipes were not identified in any of the trenches. Piping discovered during the exploratory excavation trenching included 2 and 4-inch diameter PVC piping, and 4-inch steel piping.

3.4 Field Quality Assurance/Quality Control

Converse observed standard EPA sample collection and handling protocol, including chain-of-custody control.

3.5 Chemical Analytical Methods

All soil samples were submitted to the Enviro-Chem laboratory in Pomona, California for potential analysis. Soil vapor samples were submitted to ESC Lab Sciences or Jones Environmental for analysis.

Former Dilapidated Pool Area (MB-1A through MB-1E)

Soil samples from 2 and 4 feet bgs were analyzed in accordance with the following EPA Test Methods:

• EPA Method 8015M for TPH in the gasoline, diesel and motor oil ranges

All soil samples from 6 and 8 feet bgs were archived by the laboratory.

Spilled Drum Area (MB-5A through MB-5E)

Select soil samples from varying depths were analyzed in accordance with the following EPA Test Methods:

- EPA Method 8015M for TPH in the gasoline, diesel and motor oil ranges
- EPA Method 8260B for VOCs and fuel oxygenates.

Soil samples not analyzed were archived by the laboratory.

Soil vapor samples from 5 and 15 feet bgs were analyzed in accordance with EPA Test Method TO-15 for VOCs and oxygenates, as well as TPH in the gasoline range.

Pesticide Borings (AG-25 through AG-26)

Soil samples from 2 and 4 feet bgs were analyzed in accordance with the following EPA Test Methods:

- EPA Method 6010 for Arsenic
- EPA Method 8081A for OCPs

All samples from 6 and 8 feet bgs were archived by the laboratory.

Stained Soil Area (S-1)

Soil samples from 2 and 4 feet bgs were analyzed in accordance with the following EPA Test Methods:

- EPA Method 6010/7470 for CAM 17 metals
- EPA Method 8015M for TPH in the gasoline, diesel and motor oil ranges
- EPA Method 8260B for VOCs and fuel oxygenates.

All samples from 6 and 8 feet bgs were archived by the laboratory.

General Site Screening (SV-1 through SV-6)

Soil vapor samples from 5 or 12 feet bgs were analyzed in accordance with EPA Test Method TO-15 for VOCs.

4.0 Presentation and Evaluation of Results

4.1 Subsurface Conditions

The soils in all borings were observed to be predominantly brown clayey sand or clayey silt underlain by fine grained sands with varying amounts of clay. More details of the soil types observed are presented on the boring logs in Appendix A.

No significant signs of contamination were observed, with the exception of slightly discolored soils in some shallow samples from locations MB1A through MB1E.

Groundwater was not encountered in any of the borings which were completed to maximum depths of 16 feet bgs.

4.2 Analytical Results

The analytical reports from the laboratories are provided in Appendix B. A summary of the analytical results are provided below and in Tables 1, 2, and 3.

4.2.1 Soil Samples

Metals

A total of 9 metals were detected in samples from the stained soil area. With the exception of arsenic, all reported metals concentrations are less than their respective RSL-r values established by the EPA. All metals were reported at maximum concentrations less than their respective Total Threshold Limit Concentration (TTLC) limits for hazardous waste classification.

Arsenic was reported at a maximum concentration of 5.43 mg/kg in the samples from the stained soil area and agricultural use areas. All reported arsenic concentrations exceed the RSL-r of 0.61 mg/kg, but are less than the DTSC screening level of 12 mg/kg.

Pesticides

No OCPs were reported in any of the samples analyzed.

TPH

TPH in the gasoline range (C4-C10) was not detected in any of the soil samples analyzed.

Diesel range (C11-C22), and/or heavy oil range (C23-C35) TPH was reported in three samples from depths of 2 feet bgs (MB1A, MB1B and MB1D), and one (1) sample from a depth of 4 feet bgs (MB1E). Maximum concentrations of TPH in the diesel and oil ranges were reported at 32.6 and 288 mg/kg, respectively. The concentrations of TPH in the diesel and heavy hydrocarbon ranges are less than the California Regional Water Quality Control Board (CRWQCB) Maximum Soil Screening Levels (MSSLs) of 1,000 and 10,000 mg/kg, respectively, based on a distance above groundwater between 20 and 150 feet. However, a limited number of the oil range TPH concentrations exceed the RSL-r value of 100 mg/kg.

VOCs

No VOCs were reported in any of the samples analyzed.

4.2.2 Soil Vapor Samples

Using formulas presented in the DTSC Vapor Intrusion Guidance, and screening levels for indoor air concentrations, screening levels for soil vapor samples were calculated that are considered protective of human health from the threat of vapor intrusion. Sample results were compared to these calculated screening levels. The indoor air screening levels used were obtained from the DTSC Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Notes 3 and 7. And for chemicals not listed in those Notes, RSL-r values were used.

TPH Gasoline Range

Gasoline range TPH was reported in all samples analyzed with concentrations ranging from 1,050 to 8,690 ug/m³. All reported concentrations of TPH gas are less than the calculated screening level of 590,000 ug/m³.

VOCs

A total of 37 VOCs were detected in the soil vapor samples analyzed. Reported VOCs include; acetone, allyl chloride, benzene, bromodichloromethane, bromomethane, 1,3-butadiene, carbon disulfide, chloroform, chloromethane, cyclohexane, cic-1,2-dichloroethene, 1,4-dioxane, ethanol, ethylbenzene, 4-ethyltoluene, tricholorfluromethane, heptane, n-hexane, isopropylbenzene, methylene chloride, methyl butyl ketone (MBK), 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), 2-propanol, propene, styrene, tetrachloroethylene, tetrahydrofuran, toluene, 1,1,1-trichloroethane, 1,1, 2 trichloroethane, 1,2,4 TMB, 1,3,5 TMB 2,2,4-trimethylpentane, m & p- xylenes and o-xylene.

With the exception of 1,3-butadine, all reported VOC concentrations in the soil vapor samples are less than their respective soil vapor screening levels. It is noted that no screening levels are currently established for 4-ethyltoluene, heptane, and 2,2,4-Trimethylpentane.

1,3-butadiene were reported in 11 of the 16 samples at a maximum concentration of 133 ug/m³, and 9 of the reported concentrations exceed the calculated screening level of 17 ug/m³.

4.3 Data Quality Assurance/Quality Control

4.3.1 Hold Times

All samples were immediately transported to laboratories under chain-ofcustody documentation, and all analyses were conducted within their appropriate hold times.

4.3.2 Laboratory Quality Assurance

The laboratories provided data to estimate precision, accuracy, and bias. The laboratory reports indicate that the method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives for soil and soil vapor samples. No outstanding issues were identified. Overall, the presented data (including the qualified result) are reliable and useable for project decision making. Laboratory Quality Assurance data are included in the analytical reports in Appendix B.

4.3.3 Method Reporting Limits

- The Practical Quantitation Limit (PQL) for TPH as gasoline, diesel, and oil ranges, in soils were 10, 10, and 50 mg/kg, respectively.
- The PQLs for VOCs in soils ranged from 0.005 to 0.020 mg/kg.
- The PQL for metals in soil ranged from 0.01 mg/kg to 5.0 mg/kg.
- The PQLs for OCPs in soils ranged from 0.001 mg/kg to 0.020 mg/kg.
- The PQLs for CHs in soils ranged from 0.020 mg/kg to 20.0 mg/kg.
- The PQLs for VOCs reported in soil vapor ranged from 0.826 to 885 micrograms per liter μg/m³.

5.0 Interpretation and Conclusions

5.1 RECs and Potential Release Area(s)

Based on the findings presented in the Converse Phase I ESA report it was concluded that the Site may have been impacted from various historic releases related to the historic agricultural use. Additionally, although no releases have been reported, potential releases from the onsite USTs could also have resulted in impacts to the Site. In 2014 Converse conducted a Limited Phase II ESA for the Site, and concluded the following:

With the exception of select samples collected near stained soil areas, all reported concentrations of metals, pesticides, TPH, and VOCs in soil were less than their respective RSL-r values. Although all reported arsenic concentrations exceed the RSL-r value, they are less than the screening level used by the DTSC for concentrations considered to be naturally occurring background levels.

In the vicinity of the stained soil near the dilapidated pool (boring location MB1) TPH was reported at relatively low concentrations in the diesel and oil range in the sample from 2 feet bgs, but were not detected in the sample from 4 feet bgs. No VOCs were detected in the soil vapor samples from this location.

In the vicinity of a spilled drum on the north side of the maintenance barn (boring location MB5) TPH was reported at relatively low concentrations in the diesel and oil ranges in the sample from 2 feet bgs, at a moderately elevated level in the oil range in the sample from 4 feet bgs, but were not detected in the sample from 8 feet bgs. Concentrations of TPH in the gasoline range in soil vapor samples from 5 and 15 feet bgs were slightly less than their screening level at this location. Naphthalene was detected in the soil vapor sample from 5 feet bgs at location MB5 in excess of the screening level, but the concentration of naphthalene in the 15-foot sample, and all other VOCs in both soil vapor samples were less than their respective screening levels.

- None of the 21 soil vapor probes at 12 locations across the Site had any detectable concentrations of methane, and no buildup of pressure was noted.
- The geophysical survey conducted in the vicinity of the maintenance barn and breezeway areas did not reveal the presence of any USTs, or suspect former USTs excavation areas. However, one (1) small electromagnetic (EM) anomaly and several discontinuous unknown lines were detected on the east side of the maintenance barn in the vicinity of boring MB2.

Converse recommended that TPH-impacted and stained soils in the vicinity of boring locations MB1 and MB5 be excavated and properly disposed to an offsite facility, and that the agricultural areas of the Site be assessed during redevelopment for the potential presence of transite pipe. Converse also recommended that contingency be added to the development plans for the Site to deal with the EM anomaly and discontinuous lines that were detected during the geophysical survey, and any USTs that may potentially be located beyond the assessed area.

Based on the findings of a Phase I ESA conducted on the site by Rincon in 2015, they concurred with the recommendations presented in the Converse Phase II ESA, and also recommended additional assessment to further evaluate potential impacts from spills and historic agricultural uses.

5.2 Conceptual Model Validation/Adequacy of Investigations

It is our opinion that the field and analytical data validated the conceptual model and the investigation adequately evaluated the identified objectives.

5.3 Absence, Presence, Degree, Extent of Target Analytes

The target analytes of TPH, VOCs and metals were detected in some of the soil and soil vapor samples analyzed. Concentrations of detected chemicals were generally greater in shallower samples than in deeper samples, which is indicative of releases having occurred at the ground surface.

With the exception of arsenic and TPH in the heavy oil range, all chemical concentrations reported in soil samples are less than their respective RSL-r and MMSL screening levels. However, all reported arsenic concentrations are considered to be naturally occurring background levels. Concentrations of TPH in excess of the RSL-r were reported in samples where stained soil was observed from a reported spill south of the swimming pool. The extents of the impact are approximately limited to the upper 3 feet of soil beneath the areas where staining is observed on the surface (approximately 30 cubic yards).

With the exception of 1,3-butadiene, all chemical concentrations reported in soil vapor samples are less than their respective soil vapor screening levels for residential land use. The maximum concentration of 1,3-butadiene are less than the screening level for commercial land use. It is noted that occurrence of this compound, which is commonly associated with the manufacturing of rubber and as a product of combustion, is not believed to be associated with historic onsite uses of the Site. Based on discussions with knowledgeable laboratory and DSTC personnel who have experience with this compound, it is suspected that

the likely source is the Nylaflow tubing used in the construction of the soil vapor probes. Therefore, the reported concentrations of this compound are considered to likely be anomalous artifacts of the sampling process, and not attributable to the subsurface conditions beneath the Site. Further, the proposed redevelopment plan for the Site will include significant grading and compaction of soils that would result in a reduction of the risk posed by this compound, if present.

No transite piping was discovered during exploratory trenching activities.

5.4 Other Concerns

5.4.1 Significant Assumptions

It is assumed that the Nylaflow tubing used in the construction of the soil vapor probes is the likely source of 1,3-butadiene reported in soil vapor samples. No other significant assumptions need to be noted in this *Limited Phase II ESA* report.

5.4.2 Limitations and Exceptions

Onsite structures and materials were a limitation in potentially identifying USTs or backfilled UST locations during the prior assessment. No limitation and exceptions were encountered during the completion this assessment.

5.4.3 Special Terms and Conditions

No special terms or conditions need to be noted in this *Limited Phase II ESA* report.

5.5 Conclusions/Objectives Met

Converse has performed a Phase II ESA at the Polopolus Eastvale Property located at 7270 Hamner Avenue in the City of Eastvale, Riverside County, California. The Phase II ESA was completed in conformance with the scope and limitations of ASTM, E1903-11 and the following objectives:

- 1.) Further evaluate the hydrocarbon impacted soil and/or soil vapor in the vicinity of the previously identified spilled drum and dilapidated pool areas;
- Evaluate the potential presence of OCPs and arsenic in the surface and shallow subsurface soil associated with the onsite mixing and storing of pesticides;

- 3.) Evaluate former agricultural use areas for the potential presence of buried transite irrigation pipes;
- 4.) Evaluate potential areas of stained soil in the former location of smudge pot storage for impacts from total petroleum hydrocarbons (TPH); and
- 5.) Identify if potential target analytes are present at concentrations greater than threshold criteria.

Based upon the above, Converse has concluded the following:

- No concentrations of VOCs, OCPs or TPH in the gasoline range were reported in any of samples analyzed.
- Transite piping was not discovered during exploratory trenching activities.
- Arsenic was detected in all of the samples analyzed at concentrations greater than the RSL-r, but that are less than the DTSC screening level of 12 mg/kg considered to be representative of naturally occurring background concentrations.
- TPH in the diesel and/or heavy oil ranges was reported in soil samples in the vicinity of stained soil around the swimming pool and a 5-gallon bucket. The concentrations are less than the MSSLs which are protective of groundwater. However, some of the heavy oil range concentrations exceed the RSL-r screening level value.
- A total of 37 VOCs, as well as gasoline range TPH, were detected in the soil vapor samples analyzed. With the exception of 1,3-butadine, all reported compound concentrations in the soil vapor samples are less than their respective soil vapor screening levels for a residential land use scenario. The maximum concentration of 1,3-butadiene is less than the screening level for commercial land use.

It is noted that occurrence of 1,3-butadiene, which is commonly associated with the manufacturing of rubber and as a product of combustion, is not believed to be associated with historic onsite uses of the Site. Based on discussions with knowledgeable laboratory and DSTC personnel who have experience with this compound, it is suspected that the likely source is the Nylaflow tubing used in the construction of the soil vapor probes. Therefore, the reported concentrations of this compound are considered to likely be anomalous artifacts of the sampling process, and not attributable to the subsurface conditions beneath the Site. Further, the proposed redevelopment plan for the Site will include significant grading and compaction of soils that would result in a reduction of the risk posed by this compound, if present.

It is our opinion that the objectives of the Phase II ESA were met, and no additional assessment, is necessary to assess the objectives of the Phase II ESA.

6.0 Recommendations

Based on the findings of this investigation it is our opinion that the objectives of the investigation have been met. It is recommended that stained soils impacted with TPH be excavated and properly disposed of to an offsite facility. Based on the results of this assessment it is assumed that approximately 30 cubic yards of soil in the vicinity of the swimming pool will require removal. Any additional stained or odorous soil identified during site redevelopment activities should also be appropriately removed and disposed of.

Although the previously conducted geophysical survey did not reveal the presence of any USTs, there is a possibility that USTs may still be present on the Site. It is recommended that contingency be added to the development plans for the Site to deal with any USTs or subsurface features that may potentially be encountered during Site redevelopment.

7.0 Reliance

This report is for the sole benefit and exclusive use of Lewis Retail Centers in accordance with the terms and conditions that are presented in our proposal, dated April 8, 2017, under which these services have been provided. The preparation of this report has been in accordance with generally accepted environmental practices. No other warranty, either express or implied, is made.

This report should not be regarded as a guarantee that no further contamination, beyond that which could be detected within the scope of this assessment, is present at the Site. Converse makes no warranties or guarantees as to the accuracy or completeness of information provided or compiled by others. It is possible that information exists beyond the scope of this assessment. It is not possible to absolutely confirm that no hazardous materials and/or substances exist at the Site. If none are identified as part of a limited scope of work, such a conclusion should not be construed as a guaranteed absence of such materials, but merely the results of the evaluation of the Site at the time of the assessment. Also, events may occur after the Site visit, which may result in contamination of the Site. Additional information, which was not found or available to Converse at the time of report preparation, may result in a modification of the conclusions and recommendations presented.

Any reliance on this report by Third Parties shall be at the Third Party's sole risk. Should Opus Bank wish to identify any additional relying parties not previously identified, a completed Application of Authorization to Use (see following page) must be submitted to Converse Consultants.

Application for Authorization to Use

ТО:	Converse Consultants 2021 Rancho Drive, Suite 1 Redlands, California 92373						
	Project Title & Date:						
	Project Address:						
	: (Please identify name & address of person/enced report.)	entity applying for permission to use the					
Applic	cant the referenced report in order to:	hereby applies for permission to use					
Applica	ant wishes or needs to use the referenced report	because:					
docum copying Consu such p	ant also understands and agrees that the reent and shall remain the sole property of CONVERG of the report is strictly prohibited without the electrons. Applicant understands and agrees that ermission at its sole discretion, or grant such performs, such as the payment of a re-use fee, among	RSE CONSULTANTS. Unauthorized use or express written permission of CONVERSE t CONVERSE CONSULTANTS may withhold ermission upon agreement to Terms and					
	Applicant Signature:						
	Applicant Name (print):						
	Title:						
	Date:						

8.0 References and Sources of Information

- California Department of Toxic Substances Control (DTSC) and California Regional Water Quality Control Board (RWQCB), Los Angeles Region, Advisory-Active Soil Gas Investigations, April 2012.
- Converse Consultants, Phase I Environmental Site Assessment, Polopolus Eastvale, 7270 Hamner Avenue, May 21, 2014.
- Converse Consultants, Limited Phase II Environmental Site Assessment, Polopolus Eastvale, 7270 Hamner Avenue, June 5, 2014.
- Department of Toxic Substances Control, Determination of a Southern California Regional Background Arsenic Concentration in Soil, 2008.
- Department of Toxic Substances Control, Guidance for the evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), October 2011.
- Rincon Consultants, Phase I Environmental Site Assessment, Polopolus Eastvale, 7270 Hamner Avenue, August 6, 2015.
- William Bosan, Ph.D., DTSC Senior Toxicologist, phone conversation on May 4, 2017.
- Steve Jones, Ph.D., Owner of Jones Environmental Inc., phone conversation on May 2, 2017.

Figures

Figures

Property Location Map

LEWIS RETAIL CENTERS POLOPOLUS EASTVALE 7270 HAMNER AVENUE EASTVALE, CALIFORNIA Project No.


17-16-130-01

Converse Consultants

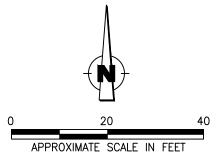
FIGURE

APPROXIMATE SITE BOUNDARY

O APPROXIMATE BORING LOCATION

LEWIS RETAIL CENTERS POLOPOLUS EASTVALE 7270 HAMNER AVENUE EASTVALE, CALIFORNIA

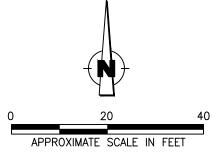
Project No.


Figure No. 2

17-16-130-01

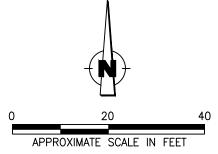
EXPLANATION

APPROXIMATE BORING LOCATION


SAMPLE LOCATION MAP

EXPLANATION

APPROXIMATE BORING LOCATION


SAMPLE LOCATION MAP


EXPLANATION

APPROXIMATE BORING LOCATION

SAMPLE LOCATION MAP

0 150 300

APPROXIMATE SCALE IN FEET

O APPROXIMATE LOCATION OF WELL

APPROXIMATE LOCATION OF TRENCH

Converse Consultants

LEWIS RETAIL CENTERS POLOPOLUS EASTVALE 7270 HAMNER AVENUE EASTVALE, CALIFORNIA

Project No.

Figure No.

17-16-130-01

4

Tables

Tables

Table 1 Summary of Analytical Results - Metals and Pesticides in Soil

7270 Hamner Avenue Eastvale, California

Boring Location	Sample In	formation		Metals EPA Methods 6010b/7471 (mg/kg)										OCPs Method 8081 (mg/kg)						
	Depth (feet bgs)	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	All OCPs
AG-25	2	4/12/2017	•	4.04	ı	-	-	-		-	-	-	-	-	-	-	-	-	-	ND
	4	4/12/2017	ı	2.90	ı	-	1	i	ı	1	1	-	-	ı	1	-	-	-	-	ND
AG-26	2	4/12/2017	•	4.96	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND
AG-20	4	4/12/2017	-	4.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND
AG-27	2	4/12/2017	•	5.20	ı	-	-	-		-	-	-	-	-	-	-	-	-	-	ND
AG-21	4	4/12/2017	•	4.97	ı	•	•	i	-	-	-	-	-	-	•	-	•	•	-	ND
AG-28	2	4/12/2017	•	5.43	•	•	•	i	ı	-	-	-	-	ı	•	-	•	•	-	ND
AG-20	4	4/12/2017	1	3.82	ı	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND
AG-29	2	4/12/2017	•	3.81	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND
AG-29	4	4/12/2017	ı	1.51	ı	•	•	i	-	-	-	-	-	-	•	-	-	-	-	ND
S-1	2	4/12/2017	ND	5.24	90.4	ND	ND	19.6	6.11	11.8	4.06	ND	ND	11.0	ND	ND	ND	40.2	30.6	-
3-1	4	4 /12/2017	ND	2.99	52.1	ND	ND	18.1	9.87	7.85	4.44	ND	ND	6.28	ND	ND	ND	33.3	26.7	-
Maxim	Maximum Concentration			5.43	90.40			19.60	9.87	11.80	4.44			11.00				40.20	30.60	-
RSL-r				0.61	15000			120,000	23	3,100	400			1,500				390	23,000	-
TTLC			500	10000			2500	8000	2500	1000			2000				2400	5000	-	

mg/kg = Milligrams per kilogram

bgs = Below ground surface

ND = Not detected above the method detection limit

RSL-r = Regional Screening Level for Residential Land Use

TTLC = Total Threshold Limit Concentration

Table 2 Summary of Analytical Results - TPH and VOCs in Soil

7270 Hamner Avenue Eastvale, California

Boring	Sample Ir	nformation	Total Petro EPA 8	leum Hydro (TPH) 3015M (mg/		Volatile Organic Compounds (VOCs) EPA 8260B (mg/kg)				
Location	Date	Depth (feet bgs)	gasoline range (C4-C10)	diesel range (C11-C22)	oil range (C23-C35)	Napthalene	1,2,4- Trimethylbenzene	All Other VOCs		
MB-1A	4/12/2017	2	ND	12.3	125	-	-	-		
IVID-TA	4/12/2017	4	ND	ND	ND	-	-	-		
MB-1B	4/12/2017	2	ND	32.6	288	-	-	-		
IVID-1B	4/12/2017	4	ND	ND	ND	-	-	-		
MB-1C	4/12/2017	2	ND	ND	ND	-	-	•		
WB-TC	4/12/2017	4	ND	ND	ND	-	-	-		
MB-1D	4/12/2017	2	ND	13.0	77.9	-	-	-		
MB-1D	4/12/2017	4	ND	ND	ND	-	-	-		
MB-1E	4/12/2017	2	ND	ND	ND	-	-	-		
MD-1L	4/12/2017	4	ND	16.0	105	-	-	-		
		2	ND	ND	ND	ND	ND	VOCs		
MB-5A	4/12/2017	4	ND	ND	ND	ND	ND	ND		
MD-3A	4/12/2017	8	ND	ND	ND	ND	ND	ND		
		16	ND	ND	ND	ND	ND	ND		
		2	ND	ND	ND	ND	ND	ND		
MB-5B	4/12/2017	4	ND	ND	ND	ND	ND	ND		
		8	ND	ND	ND	ND	ND	ND		
		2	ND	ND	ND	ND	ND	ND		
MB-5C	4/12/2017	4	ND	ND	ND	ND	ND	ND		
		12	ND	ND	ND	ND	ND	ND		
MB-5D	4/12/2017	2	ND	ND	ND	ND	ND	ND		
MD-3D	4/12/2017	4	ND	ND	ND	ND	ND	ND		
MB-5E	4/12/2017	4	ND	ND	ND	ND	ND	ND		
IVID-UL	7/12/2017	16	ND	ND	ND	ND	ND	All Other VOCs		
S-1	4/12/2017	2	ND	ND	96.6	ND	ND	ND		
0-1	7/12/2017	4	ND	ND	ND	ND	ND	ND		
Maximum Soil	Screening L	evel	500	1,000	10,000	-	-	-		
Regional Scree	ening Level -	residential	100	240	100	3.6	62			

mg/kg = Milligrams per kilogram bgs = Below ground surface

ND = Not detected above the method detection limit

Table 3 Summary of Analytical Results - VOCs in Soil Vapor 7270 Hamner Avenue Eastvale, California

Boring Location			-5A		3-5B		-5C		-5D		-5E	SV1	SV2	SV3	SV4	SV5	SV6	Indoor Air Screening	Attenuation Factor (future	Calculated Soil Vapor Screening
Da		4/12	2/17	4/12	2/17	4/12/17	4/21/17	4/21	1/17	4/2′	1/17	5/1/17	5/1/17	5/1/17	5/1/17	5/1/17	5/1/17	Level	residential	Level
Sample Information Dep		5	15	5	15	5	15	5	15	5	15	5	5	5	12	12	12	(ug/m ³)	construction)	(ug/m ³)
Acetone		401	236	432	60.2	384	2.01	1950	221	1970	179	220	140	69	100	130	140	32000	1,000	32,000,000
Allyl chloride		ND	ND	ND	ND	ND	ND	191	ND	ND	ND	-	-	-	-	-	-	0.47	1,000	470
Benzene		23.9	9.61	20.6	4.10	31.6	12.0	81.6	26.5	40.4	14.4	27	22	ND	13	9.2	28	0.097	1,000	97
Bromodichloromethane		ND	ND	ND	ND	ND	ND	10.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.076	1,000	76
Bromomethane		ND	ND	ND	ND	ND	ND	3.74	ND	2.14	ND	-	-	-	-	-	-	5.2	1,000	5,200
1,3-Butadiene		40.7	10.0	61.5	ND	73.1	37.4	ND	133	ND	37.4	27	35	ND	11	ND	26	0.017	1,000	17
Carbon disulfide		5.92	3.81	8.61	ND	7.62	6.61	20.2	6.89	14.3	6.84	30	ND	ND	ND	13	22	730	1,000	730,000
Chloroform		ND	ND	ND	ND	ND	ND	17.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12	1,000	120
Chloromethane		2.06	ND	2.13	0.851	3.08	0.955	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	94	1,000	94,000
Cyclohexane		7.64	1.86	13.3	ND	17.1	3.54	16.3	7.78	14.1	4.53	11	8.5	ND	ND	ND	9.8	6300	1,000	6,300,000
cis-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	1.71	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.3	1,000	8,300
1,4-Dioxane		ND	ND	5.43	ND	ND	1.56	ND	ND	10.7	ND	ND	ND	ND	ND	ND	ND	0.36	1,000	360
Ethanol		45.9	31.2	26.6	9.50	50.8	53.6	100	23.7	58.9	41.5	ND	25	ND	ND	ND	ND	0.83	1,000	830
Ethyl acetate		-	-	-	-	-	-	-		-		ND	ND	ND	37	42	28	73	1,000	73,000
Ethylbenzene		16.8	8.70	11.9	5.41	19.6	7.09	39.1	13.1	19.3	9.23	12	ND	ND	ND	ND	13	1.1	1,000	1,100
4-Ethyltoluene		4.43	2.44	2.91	ND	4.43	ND	20.8	6.34	11.9	7.02	ND	ND	ND	ND	ND	ND	NA	1,000	NA
Trichlorofluoromethane (Freon	11)	ND	ND	2.51	ND	2.93	ND	2.55	ND	2.40	ND	ND	ND	ND	ND	ND	ND	1300	1,000	1,300,000
Dichlorofluoromethane		2.65	2.17	2.97	2.10	3.07	ND	2.57	ND	2.09	ND	-	-	-	-	-	-	100	1,000	100,000
Heptane		18.7	6.44	30.4	7.48	32.7	10.4	138	23.2	5.35	12.9	205	ND	ND	ND	ND	ND	NA	1,000	NA
n-Hexane		44.3	9.16	174	50.0	83.8	19.1	297	57.7	214	20.4	ND	ND	ND	ND	ND	ND	730	1,000	730,000
Isopropylbenzene		ND	ND	ND	ND	ND	3.8	3.14	2.07	ND	ND	ND	ND	ND	ND	ND	ND	420	1,000	420,000
4-Isopropyltoluene		-	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	9.2	NA	1,000	NA
Methylene Chloride		2.65	ND	2.62	1.63	3.51	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0	1,000	1,000
Methyl butyl ketone (MBK)		ND	ND	ND	ND	ND	ND	12.4	34.5	ND	ND	ND	ND	ND	ND	ND	46	3100	1,000	3,100,000
2-Butanone (MEK)		44.1	21.3	44.0	ND	40.9	29.7	95.6	ND	118	15.7	67	52	21	36	44	ND	5200	1,000	5,200,000
4-Methyl-2-pentanone (MIBK)		54.3	29.3	47.0	ND	41.1	28.6	42.8	36.2	25.3	ND	100	56	22	56	61	110	3100	1,000	3,100,000
Napthalene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	ND	19	18	ND	0.083	1,000	83
2-Propanol (isopropyl alcohol)		13.6	22.4	11.3	8.16	19.1	13.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	210	1,000	210,000
Propene (propylene)		791	80.8	2,080	26.2	2020	375	8,210	746	6,380	251	30	200	21	49	52	150	3100	1,000	3,100,000
Styrene		3.23	2.27	2.11	ND	3.43	13.5	20.6	24.5	13.4	12.2	ND	10	19	9.4	12	26	940	1,000	940,000
Tetrachloroethylene (PCE)		ND	ND	ND	3.08	ND	21.4	33.0	27.2	8.67	6.16	8.4	ND	ND	ND	ND	ND	0.46	1,000	460
Tetrahydrofuran		ND	ND	ND	ND	ND	3.09	6.13	2.75	7.29	3.06	ND	ND	ND	ND	ND	ND	2100	1,000	2,100,000
Toluene		153	183	132	121	172	40.7	237	67.0	98.9	46.7	190	180	80	270	420	360	310	1,000	310,000
1,1,1-Trichloroethane		ND	ND	ND	ND	3.25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	1,000	1,000,000
1,1,2-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	3.41	ND	ND	ND	ND	ND	ND	ND	0.18	1,000	180
1,2,4-TMB		16.7	10.4	9.45	4.89	14.5	15.5	22.5	5.22	14.6	10.2	21	ND	ND	ND	ND	ND	7.3	1,000	7,300
1,3,5-TMB		5.99	3.01	3.27	ND	4.90	5.28	9.05	ND	5.20	3.58	ND	ND	ND	ND	ND	ND	42	1,000	42,000
2,2,4-Trimethylpentane		13.5	4.56	27.4	2.82	29.3	4.81	44.4	10.4	28.0	8.80	-	-	-	-	-	-	NA	1,000	NA
m&p-Xylenes		68.3	28.2	45.5	20.9	76.6	21.8	120	30.1	57.1	26.9	23	17	12	22	14	26	100	1,000	100,000
o-Xylene		20.5	7.50	13.60	6.41	23.5	6.37	31.6	9.91	17.7	8.07	ND	ND	ND	ND	ND	8.4	100	1,000	100,000
TPH Gasoline Range		2,000	1,770	2,650	1,910	2,620	1,820	8,690	2,480	4,660	1,050	-	-	-	-	-	-	590	1,000	590,000
All Other VOCs		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-2,080	-

bgs = Below ground surface
ND = Not detected above the method detection limit (MDL)
TMB = Trimethylbenzene
PV = Purge Volume

ug/m³ = micrograms per cubic meter

RSL-r = Regional screening level for residential land use

Boring Logs

Appendix A

Dates Drilled:	4/12/2017	Logged by:	MVF	Checked By:	MVF	_
Equipment:	GEOPROBE	Driving Weight and Dro	o: N/A	_		
Ground Surface Flev	ration (ft): N/A	Depth to Water (ft): NO	T ENCOUNTERED)		

t)		SUMMARY OF SUBSURFACE CONDITIONS This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies	SAM	PLES SA9		
Depth (ft)	Graphic Log	only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL G	VOCs (PPM)	OTHER
-		CLAYEY SAND (SC): brown, very fine to medium, poorly sorted, soft to loose, slightly moist.	>		0.0	
- - - 5			>		0.0	
_	Δ. Δ. Δ.	SAND (SW): tan, very fine to medium, moderately sorted.			0.0	
	·	Total Depth = 8 feet. Groundwater not encountered.			0.0	

Project No. 17-16-130-01

Dates Drilled:	4/12/2017		Logged by:	MVF	_Checked By:	MVF
Equipment:	GEOPROBE		Driving Weight and Drop	o: N/A	_	
Ground Surface Elevation (ft): N/A			Depth to Water (ft): NO	T ENCOUNTERED	_	

		SUMMARY OF SUBSURFACE CONDITIONS This log is part of the report prepared by Converse for this project	SAMI	PLES		
Depth (ft)	Graphic Log	and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
-		CLAYEY SAND (SC): brown, very fine to medium, poorly sorted, stiff, slightly moist.	><		0.0	
5 -			\times		0.0	
_	Δ. _Δ . Δ.	SAND (SW): tan, very fine to medium,, trace clay, moderately sorted, slightly moist.	\times		0.0	
		Total Depth = 8 feet. Groundwater not encountered.			0.0	

EASTVALE, CALIFORNIA

Project No. 17-16-130-01

Dates Drilled:	4/12/2017		Logged by:	MVF		_Checked By:	MVF
Equipment:	GEOPROE	BE	Driving Weight and	l Drop <u>:</u>	N/A	_	
Ground Surface E	levation (ft):	N/A	_ Depth to Water (ft)	: NOT ENC	COUNTERED	_	

		SUMMARY OF SUBSURFACE CONDITIONS This log is part of the report prepared by Converse for this project	SAMI	PLES		
Depth (ft)	Graphic Log	and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
-		CLAYEY SAND (SC): brown, very fine to medium, poorly sorted, stiff, slightly moist.	><		0.0	
5 -			\times		0.0	
_	Δ. _Δ . Δ.	SAND (SW): tan, very fine to medium,, trace clay, moderately sorted, slightly moist.	\times		0.0	
		Total Depth = 8 feet. Groundwater not encountered.			0.0	

EASTVALE, CALIFORNIA

Project No. 17-16-130-01

Dates Drilled:	4/12/2017	Logged by:	MVF	Checked By:	MVF
Equipment:	GEOPROBE	Driving Weight and D	rop: N/A		
Ground Surface Fle	vation (ft)· N/A	Depth to Water (ft): N	OT ENCOUNTERF	D	

		SUMMARY OF SUBSURFACE CONDITIONS	SAMI	PLES		
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
-		CLAYEY SAND (SC): brown, very fine to medium, poorly sorted, stiff, slightly moist.	×		0.0	
- - 5 -			×		0.0	
-	Δ. _{Δ.} Δ	SAND (SW): tan, very fine to medium,, trace clay, moderately sorted, slightly moist.				
	·	Total Depth = 8 feet. Groundwater not encountered.			0.0	
		Groundwater not encountered.				

EASTVALE, CALIFORNIA

Project No. 17-16-130-01

Dates Drilled:	4/12/2017	Logged by:	MVF	Checked By:	MVF	_
Equipment:	GEOPROBE	Driving Weight and Dro	o: N/A	_		
Ground Surface Flev	ration (ft): N/A	Depth to Water (ft): NO	T ENCOUNTERED)		

t)		SUMMARY OF SUBSURFACE CONDITIONS This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies	SAM	PLES SA9		
Depth (ft)	Graphic Log	only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL G	VOCs (PPM)	OTHER
-		CLAYEY SAND (SC): brown, very fine to medium, poorly sorted, soft to loose, slightly moist.	>		0.0	
- - - 5			>		0.0	
_	Δ. Δ. Δ.	SAND (SW): tan, very fine to medium, moderately sorted.			0.0	
	·	Total Depth = 8 feet. Groundwater not encountered.			0.0	

Log of Boring No. MB-1A

Dates Drilled:	4/12/2017	Logged by:	MVF	Checked By:	MVF	_
Equipment:	GEOPROBE	Driving Weight and Dro	o: N/A	_		
Ground Surface Flev	ration (ft): N/A	Depth to Water (ft): NO	T ENCOUNTERED)		

Depth (ft)	Graphic Log	SUMMARY OF SUBSURFACE CONDITIONS This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change		L GAS Sald		
Dep	Gra	at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL	VOCs (PPM)	OTHER
-		CLAYEY SAND (SC): brown, very fine to coarse, poorly sorted, moist, soft to loose.	×		0.0	
_ 5 -	Δ. Δ	SAND (SW): reddish brown, very fine to fine, minor clay, moderately sorted, slightly moistlight brown, minor medium to coarse grained sand, moderately	\times		0.0	
-	Δ. Δ. Δ.	sorted, no clay, dry			0.0	
-		-tan, very fine to fine, well sorted Total Depth = 8 feet.	>		0.0	
		Groundwater not encountered.				

EASTVALE, CALIFORNIA

Project No. 17-16-130-01

Figure No. MB-1A

Log of Boring No. MB-1B

Dates Drilled:	4/12/2017	Logged by:	MVF	Checked By:	MVF	_
Equipment:	GEOPROBE	Driving Weight and Dro	o: N/A	_		
Ground Surface Flev	ration (ft): N/A	Depth to Water (ft): NO	T ENCOUNTERED)		

(ff)	jic	SUMMARY OF SUBSURFACE CONDITIONS This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling.		PLES SA9		
Depth (ft)	Graphic Log	Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
-		CLAYEY SAND (SC): brown, very fine to medium, poorly sorted.	×		0.0	
- 5		-reddish brown, slightly coarser grained, less clay, soft to loose	\times		0.0	
-	Δ. Δ. Δ.	SAND (SW): light brown, very fine to medium, moderately sorted, dry.	\sim		0.0	
_	<u>4</u>	Total Depth = 8 feet.			0.0	
		Groundwater not encountered.				

Log of Boring No. MB-1C

Dates Drilled:	4/12/2017	Logged by:	MVF	Checked By:	MVF
Equipment:	GEOPROBE	Driving Weight and D	rop: N/A		
Ground Surface Fle	vation (ft)· N/A	Depth to Water (ft): N	OT ENCOUNTERF	D	

		SUMMARY OF SUBSURFACE CONDITIONS	SAMI	PLES		
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
-		CLAYEY SAND (SC): brown, very fine to coarse, poorly sorted, moist, soft to loose.	×		0.0	
- - 5 -	Δ. Δ. Δ.	SAND (SW): reddish brown, very fine to fine, minor clay, moderately sorted, slightly moistlight brown, minor medium to coarse grained sand, moderately			0.0	
-	· · · · · · · · · · · · · · · · · · ·	sorted, no clay, dry -tan, very fine to fine, well sorted	>		0.0	
		Total Depth = 8 feet. Groundwater not encountered.				

Log of Boring No. MB-1D

Dates Drilled:	4/12/2017		Logged by:	MVF	_Checked By:	MVF
Equipment:	GEOPROBE		Driving Weight and Drop	o: N/A	_	
Ground Surface Ele	evation (ft):	N/A	Depth to Water (ft): NO	T ENCOUNTERED	_	

		SUMMARY OF SUBSURFACE CONDITIONS	SAMI	PLES		
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
-		CLAYEY SAND (SC): brown, very fine to coarse, poorly sorted, moist, soft to loose.	×		0.0	
- - 5 -	Δ. Δ. Δ.	SAND (SW): reddish brown, very fine to fine, minor clay, moderately sorted, slightly moistlight brown, minor medium to coarse grained sand, moderately			0.0	
-	· · · · · · · · · · · · · · · · · · ·	sorted, no clay, dry -tan, very fine to fine, well sorted	>		0.0	
		Total Depth = 8 feet. Groundwater not encountered.				

EASTVALE, CALIFORNIA

Project No. 17-16-130-01

Figure No. MB-1D

Log of Boring No. MB-1E

Dates Drilled:	4/12/2017		Logged by:	MVF	Checked By:	MVF
Equipment:	GEOPROBE		Driving Weight and Drop	: N/A	-	
Ground Surface Eleva	ation (ft):	N/A	Depth to Water (ft): NO	T ENCOUNTERED	_	

		SUMMARY OF SUBSURFACE CONDITIONS This log is part of the report prepared by Converse for this project	SAMI	PLES		
Depth (ft)	Graphic Log	and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
-		CLAYEY SAND (SC): brown, very fine to medium, poorly sorted, moist, moderately stiff.	X		0.0	
- - 5 -					0.0	
-	Δ. Δ. Δ.	SAND (SW): light brown, very fine to coarse, poorly sorted, dry.			0.0	
-	Ö. Ö.	-minor silt Total Depth = 8 feet.	>		0.0	
		Groundwater not encountered.				

Project No. 17-16-130-01

Figure No. MB-1E

Log of Boring No. MB-5A

Dates Drilled:	4/12/2017		Logged by:	MVF	_Checked By:	MVF
Equipment:	GEOPROBE		Driving Weight and Drop	: N/A	_	
Ground Surface Elev	ation (ft):	N/A	Depth to Water (ft): NO	T ENCOUNTERED	_	

		SUMMARY OF SUBSURFACE CONDITIONS	SAMI	PLES		
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
_		CLAYEY SILT (ML): brown, moist, slightly stiff, very fine to fine grianed sand, trace gravel.	\times		0.0	
_	77777777		\geq		0.0	
- 5 - -		SANDY CLAY (CL): reddish brown, slightly moist, stiff, very fine to medium grained sand.				
		CLAYEY SAND (SC): yellowish brown, very fine to fine, loose	>		0.0	
- 10 - -		to very soft, moderately sorted, slightly moist.				
-		SAND (SW): brown, very fine to fine, well sorted, dry.			0.0	
- - 15 -	Δ. Δ. Δ. Δ	-slightly fine grained, trace clay, moderately sorted				
-			\geq		0.0	
		Total Depth = 16 feet. Groundwater not encountered. Soil vapor probes installed at depths of 5 and 15 feet.				

Log of Boring No. MB-5B

Dates Drilled:	4/12/2017		Logged by:	MVF	Checked By:	MVF
Equipment:	GEOPROBE		Driving Weight and Drop	: N/A	-	
Ground Surface Eleva	ation (ft):	N/A	Depth to Water (ft): NO	T ENCOUNTERED	_	

		SUMMARY OF SUBSURFACE CONDITIONS	SAMI	PLES		
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
_		CLAYEY SILT (ML): brown, moist, slightly stiff, very fine to fine grianed sand, trace gravel.	>		0.0	
_			\geq		0.0	
- 5 - -		SANDY CLAY (CL): reddish brown, slightly moist, stiff, very fine to medium grained sand.				
-						
-		CLAYEY SAND (SC): yellowish brown, very fine to fine, loose to very soft, moderately sorted, slightly moist.	\times		0.0	
- 10 -						
-						
_	Δ. Δ. Δ.	SAND (SW): brown, very fine to fine, well sorted, dry.			0.0	
	٥. ٠٠ ٥.					
15	۵. ۵. ۵.	-slightly fine grained, trace clay, moderately sorted				
– 15 - _	۵. ۵. ۵.		\geq		0.0	
		Total Depth = 16 feet. Groundwater not encountered. Soil vapor probes installed at depths of 5 and 15 feet.			0.0	
		con vapor probes instance at departs of 5 and 16 feet.				
			•			

EASTVALE, CALIFORNIA

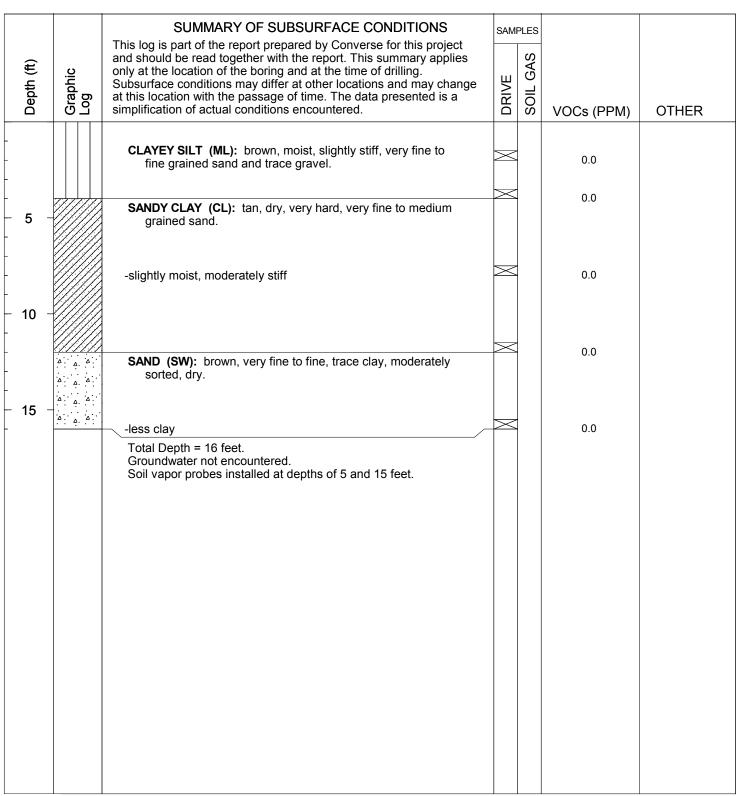
Project No. 17-16-130-01

Figure No. MB-5B

Log of Boring No. MB-5C

Dates Drilled:	4/12/2017	Logged by: MVF Checked By: M	/IVF
Equipment:	GEOPROBE	Driving Weight and Drop: N/A	
Ground Surface Eleva	ation (ft): N/A	Depth to Water (ft): NOT ENCOUNTERED	

		SUMMARY OF SUBSURFACE CONDITIONS	SAMI	PLES		
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
_		CLAYEY SILT (ML): brown, moist, slightly stiff, very fine to fine grianed sand, trace gravel.	\times		0.0	
_	77777777		\geq		0.0	
- 5 - -		SANDY CLAY (CL): reddish brown, slightly moist, stiff, very fine to medium grained sand.				
		CLAYEY SAND (SC): yellowish brown, very fine to fine, loose	>		0.0	
- 10 - -		to very soft, moderately sorted, slightly moist.				
-		SAND (SW): brown, very fine to fine, well sorted, dry.			0.0	
- - 15 -	Δ. Δ. Δ. Δ	-slightly fine grained, trace clay, moderately sorted				
-			\geq		0.0	
		Total Depth = 16 feet. Groundwater not encountered. Soil vapor probes installed at depths of 5 and 15 feet.				


Log of Boring No. MB-5D

Dates Drilled:	4/12/2017		Logged by:	MVF		_Checked By:	MVF
Equipment:	GEOPROE	BE	Driving Weight and	l Drop <u>:</u>	N/A	_	
Ground Surface E	levation (ft):	N/A	_ Depth to Water (ft)	: NOT ENC	COUNTERED	_	

		SUMMARY OF SUBSURFACE CONDITIONS	SAMI	PLES		
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
_		CLAYEY SILT (ML): brown, moist, slightly stiff, very fine to fine grianed sand, trace gravel.	\times		0.0	
_	77777777		\geq		0.0	
- 5 - -		SANDY CLAY (CL): reddish brown, slightly moist, stiff, very fine to medium grained sand.				
		CLAYEY SAND (SC): yellowish brown, very fine to fine, loose	>		0.0	
- 10 - -		to very soft, moderately sorted, slightly moist.				
-		SAND (SW): brown, very fine to fine, well sorted, dry.			0.0	
- - 15 -	Δ. Δ. Δ. Δ	-slightly fine grained, trace clay, moderately sorted				
-			\geq		0.0	
		Total Depth = 16 feet. Groundwater not encountered. Soil vapor probes installed at depths of 5 and 15 feet.				

Log of Boring No. MB-5E

Dates Drilled:	4/12/2017		Logged by:	MVF		_Checked By:	MVF
Equipment:	GEOPROBI	≣	Driving Weight and	d Drop <u>:</u>	N/A	_	
Ground Surface E	levation (ft):	N/A	Depth to Water (ft)	: NOT ENC	OUNTERED		

Project Name POLOPOLUS EASTVALE 7270 HAMNER AVENUE **EASTVALE, CALIFORNIA** Project No. 17-16-130-01

Figure No. MB-5E

Log of Boring No. S1

Dates Drilled:	4/12/2017		Logged by:	MVF		_Checked By:	MVF
Equipment:	GEOPROE	3E	Driving Weight and	l Drop <u>:</u>	N/A	_	
Ground Surface E	levation (ft):	N/A	_ Depth to Water (ft)	: NOT ENC	COUNTERED	_	

		SUMMARY OF SUBSURFACE CONDITIONS	SAMI	PLES		
Depth (ft)	Graphic Log	This log is part of the report prepared by Converse for this project and should be read together with the report. This summary applies only at the location of the boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.	DRIVE	SOIL GAS	VOCs (PPM)	OTHER
Depth (f	Graphic Log	Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a	DRIVE	SOIL G	VOCs (PPM) 0.0 0.0 0.0 0.0	OTHER

EASTVALE, CALIFORNIA

Figure No. Project No. 17-16-130-01

Laboratory Analytical Reports

Appendix B

Enviro - Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: April 14, 2017

Mr. Michael Van Fleet Converse Consultants 10391 Corporate Drive Redlands, CA 92734 Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

Project: Polopolus - Eastvale Lab I.D.: 170412-25 through -93

Dear Mr. Van Fleet:

The analytical results for the soil samples, received by our laboratory on April 12, 2017, are attached. The samples were received chilled, intact, and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Vice President/Program Manager

Laboratory Manager

LABORATORY REPORT

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

DATE RECEIVED:04/12/17

MATRIX: SOIL

DATE EXTRACTED: 04/13/17

DATE SAMPLED: 04/12/17

DATE ANALYZED:04/13/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B; PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
MB5A-2	170412-25	ND	ND	ND	1
MB5A-4	170412-26	ND	ND	ND	1
MB5A-8	170412-27	ND	ND	ND	1
MB5A-16	170412-29	ND	ND	ND	1
MB5B-2	170412-30	ND	ND	ND	1
MB5B-4	170412-31	ND	ND	ND	1
MB5B-8	170412-32	ND	ND	ND	1
MB5C-2	170412-35	ND	ND	ND	1
MB5C-4	170412-36	ND	ND	ND	1
MB5C-12	170412-38	ND	ND	ND	1
MB5D-2	170412-40	ND	ND	ND	1
MB5D-4	170412-41	ND	ND	ND	1
MB5E-4	170412-46	ND	ND	ND	<u>1</u>
MB5E-16	170412-49	ND	ND	ND	1
MB1A-2	170412-50	ND	12.3 *	125	1
MB1A-4	170412-51	ND	ND	ND	1
MB1B-2	170412-54	ND	32.6 *	288	1
MB1B-4	170412-55	ND	ND	ND	1
MB1C-2	170412-58	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

* = PEAKS IN DIESEL RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF DIESEL STANDARD

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

DATE RECEIVED:04/12/17

MATRIX: SOIL

DATE EXTRACTED: 04/13/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE ANALYZED: 04/13/17 DATE REPORTED: 04/14/17

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B; PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
MB1C-4	170412-59	ND	ND	ND	1
MB1D-2	170412-62	ND	13.0 *	77.9	1
MB1D-4	170412-63	ND	ND	ND	1
MB1E-2	170412-66	ND	ND	ND	1
MB1E-4	170412-67	ND	16.0 *	105	1
S1-2	170412-90	ND	ND	96.6	1
<u>S1-4</u>	170412-91	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

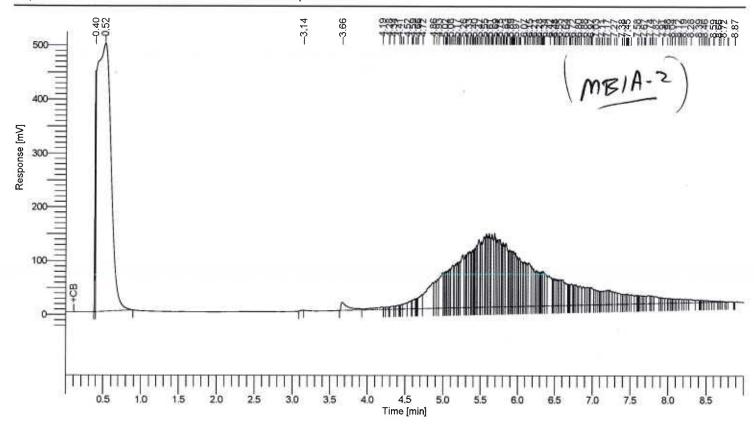
ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

* = PEAKS IN DIESEL RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF DIESEL STANDARD

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555


Software Version : 6.3.2.0646 Sample Name : 170412-50 20/2 R24 Instrument Name : GC-I

Rack/Vial Sample Amount : 0/23 : 1.000000 : 24 Cycle

: 4/14/2017 9:20:28 AM Date Data Acquisition Time: 4/13/2017 2:30:46 PM

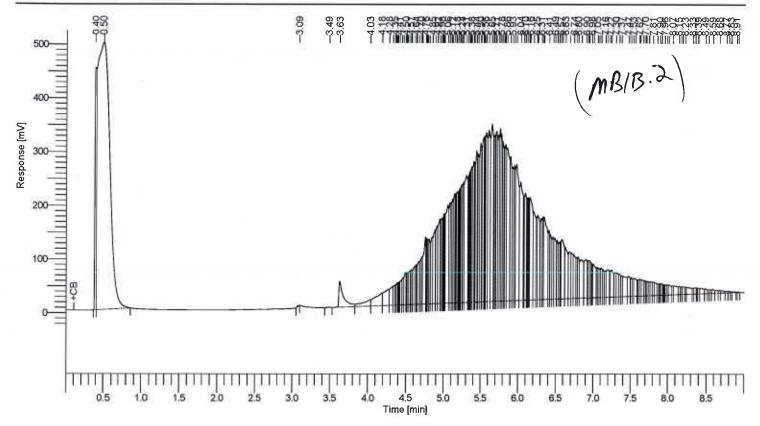
: A : GC Channel Operator Dilution Factor : 1.000000

Result File: D:\GC DATA\GC-\\102017\1704\1704\170413\4024.rst Sequence File: D:\GC DATA\GC-\\102017\1704\1704\170413\170413.seq

8015 Results

Component	Area	Adjusted
Name	[uV*sec]	Amount
C11-C22	894608	122.5
C23-C35	10059620	1247.4
	10954229	1369.9

Software Version: 6.3.2.0646


170412-54 20/2*** R24 GC-I Sample Name

Instrument Name: Rack/Vial Sample Amount 0/25 1.000000 Cycle : 26

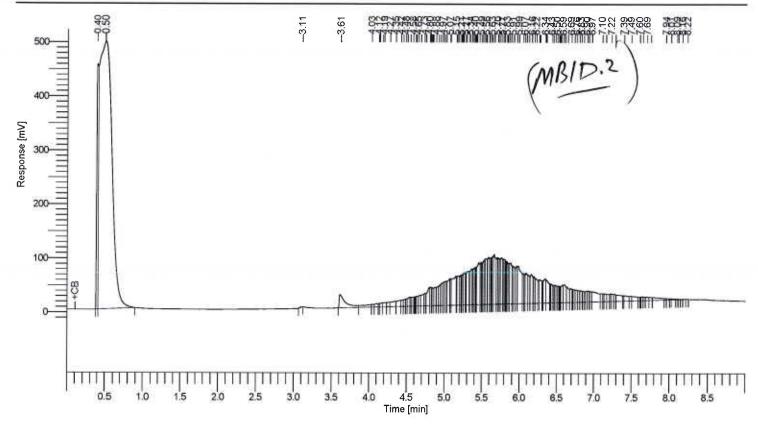
4/14/2017 9:15:47 AM Date **Data Acquisition Time** 4/13/2017 2:55:28 PM

Α Channel : GC Operator Dilution Factor : 1.000000

Result File: D:\GC DATA\GC-\\02017\1704\11704\170413\A026.rst Sequence File: D:\GC DATA\GC-\\02017\11704\11704\13\170413\170413.seq

8015 Results

Component	Area	Adjusted
Name	[uV*sec]	Amount
C11-C22	3555963	326.3
C23-C35	23939295	2878.0
	27495259	3204.2


Software Version: 6.3.2,0646

Sample Name : 170412-62 20/2 R24

Instrument Name GC-I Rack/Vial 0/29 Sample Amount 1.000000 Cycle 35 Date : 4/14/2017 9:22:14 AM Data Acquisition Time : 4/13/2017 4:44:08 PM Channel : A

Channel : A
Operator : GC
Dilution Factor : 1.000000

Result File: D:\GC DATA\GC-\\02017\1704\1704\170413\A035,rst Sequence File: D:\GC DATA\GC-\\02017\1704\170413\170413.seq

Component Name	Area [uV*sec]	Adjusted Amount	
C11-C22	990595	129.8	
C23-C35	6073384	779.1	

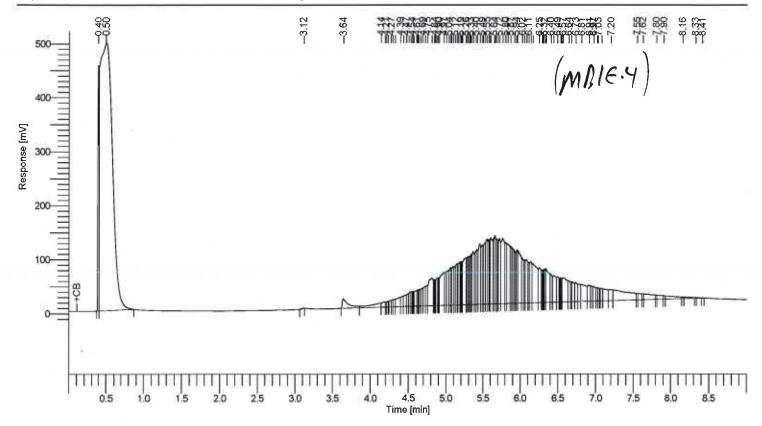
7063979

908.9

8015 Results

Software Version 1

6.3.2.0646 170412-67 20/2 R24 Sample Name


Instrument Name : GC-I Rack/Vial Sample Amount Cycle

0/32 1.0000000 : 38

4/14/2017 9:23:16 AM Date Data Acquisition Time 4/13/2017 5:20:46 PM

A GC Channel Operator Dilution Factor : 1.0000000

Result File: D:\GC DATA\GC-I\I02017\1704\1704\1704\3\038.rst Sequence File: D:\GC DATA\GC-I\I02017\1704\1704\1704\13\1704\13.seq

8015 Results

Component	Area	Adjusted
Name	[uV*sec]	Amount
C11-C22	1388003	160.3
C23-C35	8376023	1049.6
	9764026	1209.9

Enviro Chem, Inc

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907

8015B QA/QC Report

Date Analyzed:

4/13/2017

Units:

mg/Kg (ppm)

Matrix:

Soil/Solid/Sludge/Liquid

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.: 170412-26 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	161	81%	177	88%	9%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP
C11~C22 Range	200	245	123%	75-125

Analyzed and Reviewed By:

Final Reviewer: ____

Enviro Chem, Inc

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907

8015B QA/QC Report

Date Analyzed: 4/13-14/2017

Units:

mg/Kg (ppm)

Matrix:

Soil/Solid/Sludge/Liquid

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.: 170412-5 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	161	81%	178	89%	10%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP
C11~C22 Range	200	188	94%	75-125

Analyzed and Reviewed By:

Final Reviewer:

LABORATORY REPORT

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT:

Polopolus - Eastvale

MATRIX: SOIL
DATE SAMPLED: 04/12/17

DATE RECEIVED: 04/12/17
DATE ANALYZED: 04/13/17

REPORT TO:MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

EPA 6010B FOR TTLC-ARSENIC

UNITS: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	ARSENIC RESULT	DF
AG25-2	170412-70	4.04	1
AG25-4	170412-71	2.90	1
AG26-2	170412-74	4.96	1
AG26-4	170412-75	4.01	1
AG27-2	170412-78	5.20	1
AG27-4	170412-79	4.97	1
AG28-2	170412-82	5.43	1
AG28-4	170412-83	3.82	1
AG29-2	170412-86	3.81	1
AG29-4	170412-87	1.51	1
Method Blank		ND	1

PQL

0.30

COMMENTS:

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = DF X PQL

ND = Non-Detected or below the Actual Detection Limit

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

STLC Limit for Arsenic = 5 PPM

* = STLC analysis <u>is</u> recommended (if marked)

*** = The concentration exceeds the TTLC Limit @ 500 PPM, therefore the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED: 04/12/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

SAMPLE I.D.: **S1-2** LAB I.D.: 170412-90

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic (As)	5.24	0.3	1	500	5.0	6010B
Barium(Ba)	90.4	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	19.6	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	_	500	5.0	7196A
Cobalt(Co)	6.11	1.0	1	8,000	80	6010B
Copper(Cu)	11.8	1.0	1	2,500	25	6010B
Lead(Pb)	4.06	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	11.0	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	40.2	5.0	1	2,400	24	6010B
Zinc(Zn)	30.6	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17 DATE SAMPLED:04/12/17 DATE ANALYZED: 04/13/17 REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: S1-4 LAB I.D.: 170412-91

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic (As)	2.99	0.3	1	500	5.0	6010B
Barium(Ba)	52.1	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1,	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	18.1	0.5	1,1,0	2,500	560/50	6010B
Chromium VI (Cr6)	22	0.1	-	500	5.0	7196A
Cobalt(Co)	9.87	1.0	1	8,000	80	6010B
Copper(Cu)	7.85	1.0	1	2,500	25	6010B
Lead (Pb)	4.44	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	6.28	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	33.3	5.0	1	2,400	24	6010B
Zinc(Zn)	26.7	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by: _____

METHOD BLANK REPORT

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT:

Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED:04/12/17

DATE SAMPLED: 04/12/17

DATE ANALYZED: 04/13/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

METHOD BLANK REPORT FOR LAB I.D.: 170412-90, -91

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1		500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal <u>is</u> recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

OA/QC for Metals Analysis -- TTLC--SOLID/SOIL MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

ANALYSIS DATE: 4/13/2017

ANIX	ANALI SIS DATE: 4/13/2017	4/13/2017							Unit	Unit: mg/Kg(ppm)	(mdi
Analysis	Spk.Sample		SOT	SOT	Sample	Spike	SW	% Rec	MSD	% Rec	% RPD
	Ω	CONC.	%Rec.	STATUS	Result	Conc.		MS		MSD	
Aesenic(As)	170410-10	50.0	102	PASS	4.68	50.0	45.4	81%	45.5	82%	%0
Lead(Pb)	170410-10	50.0	104	PASS	1.33	50.0	46.6	91%	46.9	91%	1%
Nickel(Ni)	170410-10	20.0	103	PASS	2.77	50.0	47.3	%68	47.2	%68	%0
ANA	ANALYSIS DATE.: 4/13/2017	4/13/2017									
Analysis	Spk.Sample ID	O CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	WS	% Rec	MSD	% Rec	% RPD

MS/MSD Status:

87%

0.109

82%

0.103

0.125

PASS

94

0.125

170413-3

Mercury (Hg)

Analysis	%MS	%MSD	%CS	%RPD
Aesenic(As)	PASS	PASS	PASS	PASS
Lead(Pb)	PASS	PASS	PASS	PASS
Nickel(Ni)	PASS	PASS	PASS	PASS
Mercury (Hg)	PASS	PASS	PASS	PASS
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0~20

ANALYST

FINAL REVIEWER:

*=Fail due to matrix interference

Note:LCS is in control therefore results are in control

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

10391 Corporate Drive, Redlands, CA 92734
Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

DATE RECEIVED: 04/12/17
MATRIX: SOIL
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET

DATE RECEIVED: 04/12/17
DATE EXTRACTED: 04/13/17
DATE ANALYZED: 04/13/17
DATE REPORTED: 04/14/17

SAMPLE I.D.: AG25-2 LAB I.D.: 170412-70

Organochlorine Pesticides Analysis Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

DATE RECEIVED: 04/12/17 MATRIX: SOIL DATE EXTRACTED: 04/13/17 DATE SAMPLED: 04/12/17 DATE ANALYZED: 04/13/17 REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: AG25-4 LAB I.D.: 170412-71

Organochlorine Pesticides Analysis Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
<u>delta-BHC</u>	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
<u>Endosulfan I</u>	ND	0.001	1
Endosulfan II	ND	0.001	1
<u>Endosulfan Sulfate</u>	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
<u>Heptachlor Epoxide</u>	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT:

Polopolus - Eastvale

MATRIX: SOIL

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE RECEIVED: 04/12/17 DATE EXTRACTED: 04/13/17

DATE ANALYZED: 04/13/17 DATE REPORTED: 04/14/17

SAMPLE I.D.: AG26-2

LAB I.D.: 170412-74

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
<u>delta-BHC</u>	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
<u>Dieldrin</u>	ND	0.001	1
<u>Endosulfan I</u>	ND	0.001	1
<u>Endosulfan II</u>	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
<u>Endrin Aldehyde</u>	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

DATE RECEIVED: 04/12/17 MATRIX: SOIL DATE EXTRACTED: 04/13/17 DATE SAMPLED: 04/12/17 DATE ANALYZED:04/13/17 REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: AG26-4 LAB I.D.: 170412-75

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
<u>beta-BHC</u>	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	NĎ	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY: __/_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

DATE RECEIVED: 04/12/17 MATRIX: SOIL DATE EXTRACTED: 04/13/17 DATE SAMPLED: <u>04/12/17</u> DATE ANALYZED: 04/13/17 REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: AG27-2 LAB I.D.: 170412-78

Organochlorine Pesticides Analysis Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
<u>beta-BHC</u>	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
<u>delta-BHC</u>	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
<u>Endosulfan Sulfate</u>	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Pole

Polopolus - Eastvale

DATE RECEIVED: 04/12/17

MATRIX: SOIL

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE RECEIVED: 04/12/17

DATE EXTRACTED: 04/13/17

DATE REPORTED: 04/14/17

SAMPLE I.D.: AG27-4 LAB I.D.: 170412-79

Organochlorine Pesticides Analysis Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
<u>Heptachlor Epoxide</u>	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT:

Polopolus - Eastvale

DATE RECEIVED:04/12/17 MATRIX: SOIL DATE EXTRACTED: 04/13/17 DATE SAMPLED: <u>04/12/17</u> DATE ANALYZED:04/13/17 REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

SAMPLE I.D.: AG28-2

LAB I.D.: 170412-82

Organochlorine Pesticides Analysis Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

SAMPLE RESULT	PQL	DF
ND	0.001	1
NĎ	0.001	1
ND	0.001	1
ND	0.001	1
ND	0.005	1
ND	0.001	1
ND	0.020	1
	ND N	ND 0.001 ND 0.001 ND 0.001 ND 0.001 ND 0.001 ND 0.005 ND 0.001 ND 0.001

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

DATE RECEIVED: 04/12/17 MATRIX: SOIL DATE EXTRACTED:04/13/17 DATE SAMPLED: 04/12/17 DATE ANALYZED: 04/13/17 REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: AG28-4 LAB I.D.: 170412-83

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

SAMPLE RESULT	PQL	DF
ND	0.001	1
ND	0.005	1
ND	0.001	1
ND	0.020	1
	ND N	ND 0.001 ND 0.001 ND 0.001 ND 0.001 ND 0.001 ND 0.001 ND 0.005 ND 0.001 ND 0.001

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

DATE RECEIVED: 04/12/17 MATRIX: SOIL DATE EXTRACTED: 04/13/17 DATE SAMPLED: <u>04/12/17</u> DATE ANALYZED:04/13/17 REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: AG29-2

LAB I.D.: 170412-86

Organochlorine Pesticides Analysis Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
<u>delta-BHC</u>	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	- 1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE EXTRACTED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: AG29-4 LAB I.D.: 170412-87

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
<u>delta-BHC</u>	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
<u>Dieldrin</u>	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Converse Consultants

REPORT TO: MR. MICHAEL FLEET

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE SAMPLED: 04/12/17

DATE EXTRACTED: 04/13/17 DATE ANALYZED: 04/13/17 DATE REPORTED: 04/14/17

DATE RECEIVED: 04/12/17

METHOD BLANK REPORT FOR LAB I.D.:

170412-70, -71, -74, -75, -78, -79, -82, -83, -86, -87

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	1
4,4'-DDT	ND	0.001	1
Dieldrin	ND	0.001	1
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905 Fax (909)590-5907

EPA 8081 QA/QC Report

Matrix:

Soil/Solid/Liquid(Oil)

Date Analyzed: 4/13/2017

Unit:

mg/Kg (ppm)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.:

170412-70 MS/MSD

Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %REC
Gamma-BHC	0.000	0.00500	0.00498	100%	0.00480	96%	4%	0-20%	70-130
Aldrin	0.000	0.00500	0.00457	91%	0.00479	96%	5%	0-20%	70-130
4,4-DDE	0.000	0.00500	0.00485	97%	0.00511	102%	5%	0-20%	70-130

Lab Control Spike (LCS) Recovery:

Analyte	spk conc	LCS	% REC	ACP %REC
Gamma-BHC	0.00500	0.00500	100%	75-125
Aldrin	0.00500	0.00477	95%	75-125
4,4-DDE	0.00500	0.00500	100%	75-125
Dieldrin	0.00500	0.00510	102%	75-125

50-150

Surrogate Recovery	ACP%	%REC						
Sample I.D.		MB	170412-70	170412-71	170412-74	170412-75	170412-78	170412-79
Tetra-chloro-meta-xylene	50-150	134%	140%	137%	125%	144%	141%	145%
Decachlorobiphenyl	50-150	78%	89%	85%	88%	87%	89%	84%
Surrogate Recovery	ACP%	%REC						
Sample I.D.		170412-82	170412-83	170412-86	170412-87			
Tetra-chloro-meta-xylene	50-150	147%	148%	130%	140%			
Decachlorobiphenyl	50-150	85%	88%	87%	92%			
(4)	**	7						
Surrogate Recovery	ACP%	%REC						
Sample I.D.								
Tetra-chloro-meta-xylene	50-150							

S.R. = Sample Result

* = Surrogate fail due to matrix interference (If Marked)

spk conc = Spike Concentration

Note: LCS, MS, MSD are in control therefore results are in control.

%REC = Percent Recovery

Decachlorobiphenyl

ACP %RPD = Acceptable Percent RPD Range

ACP %REC = Acceptable Percent Recovery Range

Analyzed and Reviewed By:

Final Reviewer:

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5A-2 LAB I.D.: 170412-25

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5A-2 LAB I.D.: 170412-25

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENÉ	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5A-4 LAB I.D.: 170412-26

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5A-4 LAB I.D.: 170412-26

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT:

Polopolus - Eastvale

MATRIX: <u>SOIL</u>

DATE SAMPLED: <u>04/12/17</u>

REPORT TO: <u>MR. MICHAEL FLEET</u>

DATE RECEIVED: 04/12/17
DATE ANALYZED: 04/13/17

DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5A-8

LAB I.D.: 170412-27

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND ND DACE #2	0.005

---- TO BE CONTINUED N PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5A-8 LAB I.D.: 170412-27

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17 DATE SAMPLED: <u>04/12/17</u> DATE ANALYZED: 04/13/17 REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5A-16 LAB I.D.: 170412-29

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

Polopolus - Eastvale PROJECT:

DATE RECEIVED: 04/12/17 MATRIX: SOIL DATE ANALYZED: 04/13/17 DATE SAMPLED: 04/12/17 DATE REPORTED: 04/14/17 REPORT TO: MR. MICHAEL FLEET

LAB I.D.: 170412-29 SAMPLE I.D.: MB5A-16

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE SAMPLED: 04/12/17

DATE RECEIVED: 04/12/17 DATE ANALYZED: 04/13/17

DATE REPORTED: 04/14/17

REPORT TO: MR. MICHAEL FLEET

SAMPLE I.D.: MB5B-2

LAB I.D.: 170412-30

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	NĎ	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED: 04/12/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5B-2 LAB I.D.: 170412-30

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

Enviro - Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED: 04/12/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5B-4 LAB I.D.: 170412-31

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE RESULT PQL X1 PARAMETER 0.020 ND ACETONE 0.005 ND BENZENE 0.005 ND BROMOBENZENE 0.005 ND**BROMOCHLOROMETHANE** 0.005 BROMODICHLOROMETHANE ND 0.005 ND BROMOFORM 0.005 ND BROMOMETHANE 0.020 ND 2-BUTANONE (MEK) 0.005 ND N-BUTYLBENZENE 0.005 ND SEC-BUTYLBENZENE 0.005 TERT-BUTYLBENZENE ND 0.010 ND CARBON DISULFIDE 0.005 ND CARBON TETRACHLORIDE 0.005 ND CHLOROBENZENE 0.005 ND CHLOROETHANE 0.005 ND CHLOROFORM 0.005 ND CHLOROMETHANE 0.005 ND 2-CHLOROTOLUENE 0.005 ND 4-CHLOROTOLUENE 0.005 ND DIBROMOCHLOROMETHANE 0.005 ND 1,2-DIBROMO-3-CHLOROPROPANE 0.005 ND 1,2-DIBROMOETHANE 0.005 ND DIBROMOMETHANE 0.005 ND 1,2-DICHLOROBENZENE 0.005 ND 1,3-DICHLOROBENZENE 0.005 ND 1,4-DICHLOROBENZENE 0.005 **DICHLORODIFLUOROMETHANE** ND 0.005 ND 1,1-DICHLOROETHANE 0.005 ND 1,2-DICHLOROETHANE 0.005 ND 1,1-DICHLOROETHENE 0.005 ND CIS-1,2-DICHLOROETHENE 0.005 ND TRANS-1, 2-DICHLOROETHENE 0.005 ND 1.2-DICHLOROPROPANE

DATA REVIEWED AND APPROVED BY:

---- TO BE CONTINUED ON PAGE #2 ----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5B-4 LAB I.D.: 170412-31

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER SAMPLE RESULT PQL X1 1,3-DICHLOROPROPANE 0.005 ND0.005 2,2-DICHLOROPROPANE ND 1,1-DICHLOROPROPENE ND 0.005 0.005 CIS-1,3-DICHLOROPROPENE ND TRANS-1,3-DICHLOROPROPENE 0.005 ND 0.005 ETHYLBENZENE ND 0.020 2-HEXANONE ND 0.005 **HEXACHLOROBUTADIENE** ND 0.005 ISOPROPYLBENZENE ND 4-ISOPROPYLTOLUENE ND 0.005 0.020 4-METHYL-2-PENTANONE (MIBK) ND METHYL tert-BUTYL ETHER (MTBE) 0.005 ND METHYLENE CHLORIDE 0.010 ND 0.005 ND NAPHTHALENE 0.005 N-PROPYLBENZENE ND STYRENE ND 0.005 0.005 1,1,1,2-TETRACHLOROETHANE ND 1,1,2,2-TETRACHLOROETHANE 0.005 ND TETRACHLOROETHENE (PCE) 0.005 ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE 0.005 ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND ND 0.005 TRICHLOROFLUOROMETHANE 0.005 1,2,3-TRICHLOROPROPANE ND

ND

ND

ND

ND

ND

0.005

0.005

 $\frac{0.010}{0.005}$

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1,2,4-TRIMETHYLBENZENE

1,3,5-TRIMETHYLBENZENE

VINYL CHLORIDE

M/P-XYLENE

O-XYLENE

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

ALIONI 10: MN. MICHAEL I BELL BILL NEI ON 125. OTT 15.

SAMPLE I.D.: MB5B-8 LAB I.D.: 170412-32

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED: 04/12/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/13/17

DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5B-8 LAB I.D.: 170412-32

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

1,3-DICHLOROPROPANE	PARAMETER	SAMPLE RESULT	PQL X1
1,1-DICHLOROPROPENE	1,3-DICHLOROPROPANE	ND	0.005
CIS-1,3-DICHLOROPROPENE ND 0.005	2,2-DICHLOROPROPANE	ND	0.005
TRANS-1,3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE ND 0.005 TYPERIC ND 0.005 TYPERIC ND 0.005 TYPERIC ND 0.005	1,1-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTALENE ND 0.005 N-PROPYLBENZENE ND 0.005 I,1,2-TETRACHLOROETHANE ND 0.005 I,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,2,1-TRICHLOROBENZENE ND 0.005 1,2,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 VINYL CHLORIDE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.005	CIS-1,3-DICHLOROPROPENE	ND	0.005
2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 STYRENE ND 0.005 I.1.2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.005	TRANS-1,3-DICHLOROPROPENE	ND	0.005
HEXACHLOROBUTADIENE	ETHYLBENZENE	ND	0.005
ISOPROPYLBENZENE	2-HEXANONE	ND	0.020
4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 TAZ, 3-TRICHLOROPOPANE ND 0.005 1,2,3-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE	HEXACHLOROBUTADIENE	ND	
4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE	ISOPROPYLBENZENE	ND	
METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 W/P-XYLENE ND <td>4-ISOPROPYLTOLUENE</td> <td>ND</td> <td></td>	4-ISOPROPYLTOLUENE	ND	
METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.005	4-METHYL-2-PENTANONE (MIBK)	ND	
NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	METHYL tert-BUTYL ETHER (MTBE)	ND	
N-PROPYLBENZENE	METHYLENE CHLORIDE	ND	0.010
STYRENE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	NAPHTHALENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	N-PROPYLBENZENE	ND	
1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	STYRENE	ND	
TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,1,1,2-TETRACHLOROETHANE	ND	
TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,1,2,2-TETRACHLOROETHANE	ND	
1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	TETRACHLOROETHENE (PCE)	ND	
1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	TOLUENE	ND	
1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,2,3-TRICHLOROBENZENE	ND	
1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,2,4-TRICHLOROBENZENE	ND	
TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,1,1-TRICHLOROETHANE	ND	
TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,1,2-TRICHLOROETHANE	ND	
1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	TRICHLOROETHENE (TCE)	ND	0.005
1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	TRICHLOROFLUOROMETHANE	ND	0.005
1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,2,3-TRICHLOROPROPANE	ND	
VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,2,4-TRIMETHYLBENZENE	ND	
M/P-XYLENE ND 0.010	1,3,5-TRIMETHYLBENZENE	ND	
2.005	VINYL CHLORIDE	ND	
O-XYLENE ND 0.005	M/P-XYLENE	ND	
	O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

 $\mathtt{ND} = \mathtt{NON-DETECTED}$ OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

777 7 7 170410 25

SAMPLE I.D.: MB5C-2 LAB I.D.: 170412-35

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER ONLI . mg/ ng	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

---- TO BE CONTINUED, ON PAGE #2 ----

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

DATE RECEIVED: 04/12/17 MATRIX: SOIL DATE ANALYZED: 04/13/17 DATE SAMPLED: 04/12/17 DATE REPORTED: 04/14/17 REPORT TO: MR. MICHAEL FLEET

LAB I.D.: 170412-35 SAMPLE I.D.: MB5C-2

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1.3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1.1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	NĎ	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

Enviro - Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5C-4 LAB I.D.: 170412-36

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:___

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED: 04/12/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/13/17

DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5C-4 LAB I.D.: 170412-36

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	NĎ	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5C-12 LAB I.D.: 170412-38

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED: 04/12/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5C-12 LAB I.D.: 170412-38

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
<u>HEXACHLOROBUTADIENE</u>	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

CEFORT TO: MR. MICHAEL FIREE

SAMPLE I.D.: MB5D-2 LAB I.D.: 170412-40

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	NĎ	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

---- TO BE CONTINUED ON PAGE #2 ----

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE SAMPLED: 04/12/17

DATE RECEIVED: 04/12/17 DATE ANALYZED: <u>04/13/17</u>

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5D-2

LAB I.D.: 170412-40

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED: 04/12/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5D-4 LAB I.D.: 170412-41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT:

Polopolus - Eastvale

MATRIX: SOIL
DATE SAMPLED: 04/12/17

DATE RECEIVED: 04/12/17
DATE ANALYZED: 04/13/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5D-4

LAB I.D.: 170412-41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

11

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5E-4 LAB I.D.: 170412-46

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

---- TO BE CONTINUED ON PAGE #2 ----

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED: 04/12/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/14/17

SAMPLE I.D.: MB5E-4 LAB I.D.: 170412-46

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO:MR. MICHAEL FLEET DATE REPORTED: 04/14/17

170410 40

SAMPLE I.D.: MB5E-16 LAB I.D.: 170412-49

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER SAMPLE RESULT PQL X1 0.020 ACETONE ND 0.005 ND BENZENE ND 0.005 BROMOBENZENE 0.005 ND BROMOCHLOROMETHANE 0.005 BROMODICHLOROMETHANE ND 0.005 ND BROMOFORM 0.005 ND BROMOMETHANE 2-BUTANONE (MEK) 0.020 ND 0.005 ND N-BUTYLBENZENE 0.005 ND SEC-BUTYLBENZENE 0.005 TERT-BUTYLBENZENE ND0.010 CARBON DISULFIDE ND 0.005 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND ND 0.005 CHLOROETHANE 0.005 ND CHLOROFORM 0.005 CHLOROMETHANE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 DIBROMOCHLOROMETHANE ND 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND ND 0.005 1,2-DIBROMOETHANE 0.005 DIBROMOMETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1,3-DICHLOROBENZENE ND 0.005 ND 1,4-DICHLOROBENZENE 0.005 DICHLORODIFLUOROMETHANE ND ND 0.005 1,1-DICHLOROETHANE 0.005 1,2-DICHLOROETHANE ND 0.005 ND 1,1-DICHLOROETHENE 0.005 CIS-1,2-DICHLOROETHENE ND TRANS-1,2-DICHLOROETHENE 0.005 ND 0.005 1,2-DICHLOROPROPANE ND

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER:

Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE SAMPLED: <u>04/12/17</u>

DATE RECEIVED: 04/12/17 DATE ANALYZED: 04/13/17

DATE REPORTED: 04/14/17

REPORT TO: MR. MICHAEL FLEET

SAMPLE I.D.: MB5E-16

LAB I.D.: 170412-49

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

1,3-DICHLOROPROPANE	PARAMETER	SAMPLE RESULT	PQL X1
1,1-DICHLOROPROPENE	1,3-DICHLOROPROPANE	ND	0.005
CIS-1,3-DICHLOROPROPENE ND 0.005 TRANS-1,3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLTOLUENE ND 0.005 4-METHYL -2-PENTANONE (MIBK) ND 0.005 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYL ENE CHLORIDE ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE ND 0.005 MPPROPYLBENZENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND	2,2-DICHLOROPROPANE	ND	0.005
TRANS-1,3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE ND 0.005 METHYLENE ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE ND 0.005 METHYLENE ND 0.005 METHYLENE ND 0.005 TYPERIC ND 0.005 TYPERIC ND 0.005 TYPERIC ND 0.005 TETRACHLOROETHANE	1,1-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.005 METHYLENE CHLORIDE ND 0.005 N-PROPYLBENZENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND<	CIS-1,3-DICHLOROPROPENE	ND	0.005
2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 I,1,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROBETHANE ND 0.005 1,1,2-TRICHLOROBENZENE ND 0.005 1,1,2-TRICHLOROBENZENE ND 0.005 1,1,2-TRICHLOROBENZENE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,2-TRICHLOROBETHANE ND 0.005 1,1,2-TRICHLOROBETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROMETHANE ND 0.005 1,2,3-TRICHLOROMETHANE ND 0.005 1,2,4-TRICHLOROMETHANE ND 0.005 1,2,3-TRICHLOROPOPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 M/P-XYLENE ND 0.005 M/P-XYLENE ND 0.005	TRANS-1,3-DICHLOROPROPENE	ND	0.005
HEXACHLOROBUTADIENE	ETHYLBENZENE	ND	0.005
ISOPROPYLBENZENE	2-HEXANONE	ND	0.020
4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROFLUENGEMETHANE ND 0.005 TRICHLOROFLUENGEMETHANE ND 0.005 TRICHLOROFOPOPANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE	HEXACHLOROBUTADIENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 WINYL CHLORIDE <td< td=""><td>ISOPROPYLBENZENE</td><td>ND</td><td>0.005</td></td<>	ISOPROPYLBENZENE	ND	0.005
METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 WINYL CHLORIDE N	4-ISOPROPYLTOLUENE	ND	
METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	4-METHYL-2-PENTANONE (MIBK)	ND	0.020
NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
N-PROPYLBENZENE	METHYLENE CHLORIDE	ND	0.010
STYRENE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROETHANE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 W/P-XYLENE ND 0.005	NAPHTHALENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	N-PROPYLBENZENE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	STYRENE	ND	0.005
TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,1,1,2-TETRACHLOROETHANE	ND	
TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,1,2,2-TETRACHLOROETHANE	ND	
1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	TETRACHLOROETHENE (PCE)	ND	
1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	TOLUENE	ND	0.005
1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,2,3-TRICHLOROBENZENE	ND	0.005
1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,2,4-TRICHLOROBENZENE	ND	0.005
TRICHLOROETHENE (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,1,1-TRICHLOROETHANE	ND	
TRICHLOROFLUOROMETHANE ND 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,1,2-TRICHLOROETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	TRICHLOROETHENE (TCE)	ND	0.005
1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	TRICHLOROFLUOROMETHANE	ND	0.005
1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,2,3-TRICHLOROPROPANE	ND	
VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010	1,2,4-TRIMETHYLBENZENE	ND	
M/P-XYLENE ND 0.010	1,3,5-TRIMETHYLBENZENE	ND	
	VINYL CHLORIDE	ND	0.005
O-XYLENE ND 0.005	M/P-XYLENE	ND	0.010
	O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE RECEIVED: 04/12/17

DATE ANALYZED: 04/13/17

DATE REPORTED: 04/14/17

SAMPLE I.D.: **S1-2** LAB I.D.: 170412-90

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED:04/12/17 DATE SAMPLED: 04/12/17 DATE ANALYZED: 04/13/17 REPORT TO: MR. MICHAEL FLEET DATE REPORTED: <u>04/14/17</u>

SAMPLE I.D.: S1-2 LAB I.D.: 170412-90

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
<u>HEXACHLOROBUTADIENE</u>	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET DATE REPORTED: 04/14/17

SAMPLE I.D.: **S1-4** LAB I.D.: 170412-91

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

---- TO BE CONTINUES ON PAGE #2 ----

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED: 04/12/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/13/17

DATE REPORTED: 04/14/17

SAMPLE I.D.: **S1-4** LAB I.D.: 170412-91

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM
PARAMETER SAMPLE RESULT PQL X1
1,3-DICHLOROPROPANE ND 0.005
2,2-DICHLOROPROPANE ND 0.005

1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ŅD	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro - Chem, Inc.

METHOD BLANK REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel(909)796-0544 Email:MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL
DATE RECEIVED: 04/12/17
DATE SAMPLED: 04/12/17
REPORT TO: MR. MICHAEL FLEET
DATE REPORTED: 04/14/17

METHOD BLANK REPORT FOR LAB I.D.: 170412-25, -26, -27, -29, -30, -31, -32, -35, -36, -38, -40, -41, -46, -49, -90, -91

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Converse Consultants

10391 Corporate Drive, Redlands, CA 92734

Tel (909) 796-0544 Email: MVanFleet@ConverseConsultants.com

PROJECT: Polopolus - Eastvale

MATRIX: SOIL

DATE RECEIVED: 04/12/17

DATE SAMPLED: 04/12/17

REPORT TO: MR. MICHAEL FLEET

DATE REPORTED: 04/13/17

DATE REPORTED: 04/14/17

METHOD BLANK REPORT FOR LAB I.D.: 170412-25, -26, -27, -29, -30, -31, -32, -35, -36, -38, -40, -41, -46, -49, -90, -91

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed: Machine: 4/13/2017

C

Matrix:

Solid/Soil/Liquid

Unit:

ng/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.:

170412-25 MS/MSD

abuten equilibre man upu		II OTIL LOI	10/11100						
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.059	118%	0.061	122%	4%	75-125	0-20
Chlorobenzene	0	0.050	0.040	80%	0.041	82%	2%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.060	120%	0.061	122%	2%	75-125	0-20
Toluene	0	0.050	0.062	124%	0.061	122%	2%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.047	94%	0.045	90%	4%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.061	122%	75-125
Chlorobenzene	0.050	0.040	80%	75-125
Chloroform	0.050	0.050	100%	75-125
1,1-Dichlorothene	0.050	0.052	104%	75-125
Ethylbenzene	0.050	0.048	96%	75-125
o-Xylene	0.050	0.047	94%	75-125
m,p-Xylene	0.100	0.097	97%	75-125
Toluene	0.050	0.059	118%	75-125
1,1,1-Trichloroethane	0.050	0.046	92%	75-125
Trichloroethene (TCE)	0.050	0.048	96%	75-125

Surrogate Recovery	spk conc	ACP %RC	MB %RC	/ %RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	170412-25	170412-26	170412-27	170412-29	170412-30	170412-31
Dibromofluoromethane	50.0	70-130	95%	121%	94%	98%	108%	112%	101%
Toluene-d8	50.0	70-130	113%	128%	110%	116%	113%	115%	118%
4-Bromofluorobenzene	50.0	70-130	78%	84%	78%	769%	76%	74%	81%

Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			170412-32	170412-35	170412-36	170412-38	170412-40	170412-41	170412-46
Dibromofluoromethane	50.0	70-130	81%	98%	89%	122%	101%	117%	118%
Toluene-d8	50.0	70-130	115%	114%	114%	113%	119%	114%	117%
4-Bromofluorobenzene	50.0	70-130	81%	62*%	78%	80%	74%	81%	82%

spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
		170412-49	170412-90	170412-91	170413-17	170413-18	1.20	%Fc1
50.0	70-130	87%	129%	120%	84%	108%	170 112-30	170412.33
50.0	70-130	113%	121%	109%	119%	55*%	1 (20%	20127
50.0	70-130	77%	74%	78%	92%	39*%	1 1 10/	11R6
	50.0 50.0	50.0 70-130 50.0 70-130	50.0 70-130 87% 50.0 70-130 113%	50.0 70-130 87% 129% 50.0 70-130 113% 121%	170412-49 170412-90 170412-91 50.0 70-130 87% 129% 120% 50.0 70-130 113% 121% 109%	170412-49 170412-90 170412-91 170413-17 50.0 70-130 87% 129% 120% 84% 50.0 70-130 113% 121% 109% 119%	170412-49 170412-90 170412-91 170413-17 170413-18 50.0 70-130 87% 129% 120% 84% 108% 50.0 70-130 113% 121% 109% 119% 55*%	170412-49 170412-90 170412-91 170413-17 170413-18 50.0 70-130 87% 129% 120% 84% 108% 176,112-30 50.0 70-130 113% 121% 109% 119% 55*% 71,29%

^{* =} Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer:

0

Instructions for Sample Storage After Analysis: Dispose of O Return to Client O Store (30 Days) COMMENTS Project Name/ID: Pologolus - Eustugle Sampler's Signature: **Analysis Required** O Other: 1017 2014226 2 X 9/5/19 Date 8 Time: X X Date & Time: Date & Time 82608-VOCS 909-796-0544 909-796-7675 **CHAIN OF CUSTODY RECORD** X R Hd1-45108 X X X R × X X X X X X MIGO Fleet PRESERVATION 17 TG Project Contact: *EMPERATURE* No. OF CONTAINERS Tel: Fax: **XIATAM** 50:1 Received by: Received by: Received by: 7:35 8:37 4:35 8:35 3.40 9:30 25:3 7.40 15 <u>\$</u> 8.60 **Turnaround Time** TIME 7:30 7:35 43 M 7.31 SAMPLING 0 1 Week (Standard) DATE Same Day 0 24 Hours 4-12-17 0-72-Hours 10391 Corporate Drive Converse Consultants Redlands, CA 92374 30 なエンング 36 3 C 3 Z Tel: (909) 590-5905 Fax: (909) 590-5907 Enviro-Chem, Inc. Laboratories LAB ID CA-DHS ELAP CERTIFICATE # 1555 1214 E. Lexington Avenue, Pomona, CA 91766 Relinquished by: 777 SAMPLE ID 59-2 7 71-9-11/2 1/-S 00 15-3 1 7-Company Name: Relinquished by: Relinquished by: City/State/Zip: MBSB 135c Address: MB

WHITE WITH SAMPLE. YELLOW TO CLIENT

Instructions for Sample Storage After Analysis: CDispose of O Return to Client O Store (30 Days) COMMENTS Pologolus - East vale Sampler's Signature: Project Name/ID: **Analysis Required** KIT Archive X R 2 X X X X Date & Time. Date & Time: X 82103-1005 909-796-0544 909-796-7675 **CHAIN OF CUSTODY RECORD** X Project Contact: Myn Elect HGT.45108 R × × 2 X X × × **PRESERVATION** *BAUTAREMETURE* 13 Fax: Tel: No. OF CONTAINERS XIATAM 20:0 Received by: Received by: Received by: 10:05 10:02 4-12-17/10:00 0.10 12:10 1:00 11:07 11:05 1:10 1215 Turnaround Time 10:01 112 412 11:20 TIME 10 0 1 Week (Standard) SAMPLING DATE Same Day # 48 Hours Converse Consultants 10391 Corporate Drive Redlands, CA 92374 Other: 97-7042-40 Tel: (909) 590-5905 Fax: (909) 590-5907 Enviro-Chem, Inc. Laboratories LAB ID CA-DHS ELAP CERTIFICATE # 1555 1214 E. Lexington Avenue, Pomona, CA 91766 SAMPLE ID 7-1/2 91 7 91-ケー 00 T 2/ 00 7-058W 17 ン 00 Company Name: Relinquished by: Relinquished by: Relinquished by: City/State/Zip: MBSE MEIB Address: TB.

Page 2 of

6

WHITE WITH SAMPLE. YELLOW TO CLIENT

Instructions for Sample Storage After Analysis: CDispose of O Return to Client O Store (30 Days) COMMENTS Pologolos - Eastuale Sampler's Signature: Project Name/ID: **Analysis Required** O Other: 1611 Ar. 45.46 2 2 8 X 2 2 X 5//22/17 Date & Time 2 Date & Time Date & Time: 909-796-7675 909-796-0544 **CHAIN OF CUSTODY RECORD** HET-MS108 X X R X X × X Project Contact: **PRESERVATION TEMPERATURE** Fax: Tel: No. OF CONTAINERS 30 **XINTAM** Received by: Received by: Received by: 11:35 1:22 11.34 1:55 150 1:50 1145 1.50 11:23 1:49 **Turnaround Time** BE TIME 15:11 14:11 4-12-17 11:21 0 1 Week (Standard) SAMPLING DATE Same Day # 12 Hours 077 Hours Converse Consultants 10391 Corporate Drive Redlands, CA 92374 Other: 如下 P 2 Tel: (909) 590-5905 Fax: (909) 590-5907 Enviro-Chem, Inc. Laboratories LAB ID CA-DHS ELAP CERTIFICATE # 1555 1214 E. Lexington Avenue, Pomona, CA 91766 SAMPLE ID 7 5-30 8 7 9 7-3 00 9-Company Name: 7 9 Relinquished by: Relinquished by: Relinquished by: City/State/Zip: 2 MRID M Address: MB 131 4131

Page 5 of

Enviro-Chem, Inc. Laboratories o Sa 1214 E. Lexington Avenue, Pomona, CA 91766 Tel: (909) 590-5905 Fax: (909) 590-5907 o 114 CA-DHS ELAP CERTIFICATE # 1555

NOITAVA BAUTAR CONTAINERS Turnaround Time 0 24 Hours 0 72 Hours 0 1 Week (Standard) Other: Same Day

				_	73	9/8		1 / / /	
SAMPLE ID	LABID	SAMPLING	ЯТА	OF OF	SESE	Ā	Analysis Red	Required	STNEWNOO
		DAIE IIME	1	-	ld				COMME
7-5754	1704D-70	Y12-17 1345	Se.1	Cardina	Ia	بر ×			
h-	1t-\\\	1348		_	-	x V			
9-	77	1348		_			X		
<i>>></i>	7.	1349					入		
AG26-2	±1,1-	2141		_		×			
6-	7.	9/4/		_		スメ			
9 -	92-	81/4		_			人		
00	77-	6146		-			2		
AG27-2	1.7%	9441		_		<u>१</u>			
h-	p2-	1441		_		スソ			
9-	8	hhhl		_			X		
8-	18-	54.61		_			メ		
AG28-2	-82	1505				2 ×			
h-	-83	1506		_		X ×			
9-	18-	8051 4	→	_	→		X		
Company Name:	on verse Consulterity		<u>a.</u>	Project Contact:	ntact: Cleer		San	Sampler's Signature:	
Address:				Tel: 969	3-796.	44-50-96L-606	Pro	Project Name/ID:	
Kip: Rediends	69 63		uL.	Fax:			1,	Yologolus-Eastuck	A sa
Relinquished by: Thurk Vul	whip	Received by:	by: ' //				观别是 / 607	Instructions for Sa	Instructions for Sample Storage After Analysis:
Relinquished by:		Received by	by:				Date & Time:	ØDispose of O Return	ADispose of O Return to Client O Store (30 Days)
Relinquished by:		Received by	by:				Date & Time:	O Other:	
		NIVES		CTAI	D AU	OF CHISTONY RECORD			

CHAIN OF CUSTODY RECORD

WHITE WITH SAMPLE. YELLOW TO CLIENT

age 7 of S

Instructions for Sample Storage After Analysis: Dispose of O Return to Client O Store (30 Days) COMMENTS Pologolos - Eastuale Sampler's Signature: Project Name/ID: Archive **Analysis Required** O Other: X X 2 X 2 Date & Time: Date & Time CHAIN OF CUSTODY RECORD 8 74-746-05 HP Q X M Van Fler **PRESERVATION** Project Contact: **TEMPERATURE** Fax: No. OF CONTAINERS XIRTAM Ś Received by: Received by: Received by: 520 12.51 1525 505 1251 SSH 8-54 6541 **Turnaround Time** 354 DATE TIME SAMPLING 0 1 Week (Standard) 4-12-17 0 Same Day 0 24 Hours 0 72 Hours 8 Converse Consultants Tel: (909) 590-5905 Fax: (909) 590-5907 Enviro-Chem, Inc. Laboratories LAB ID CA-DHS ELAP CERTIFICATE # 1555 1214 E. Lexington Avenue, City/State/Zip: Red lands Pomona, CA 91766 Relinquished by: M SAMPLEID 00 00 0 Company Name Relinquished by: Relinquished by: 1 C. 0 20 8256 46.29 Address: 3

Page 5 of

ANALYTICAL REPORT

Converse Consultants - Monrovia, CA

Sample Delivery Group: L903200

Samples Received: 04/18/2017

Project Number: 17-16-130-01

Description: Polopolus - Eastvale

Report To: Michael Van Fleet

717 S. Myrtle Avenue

Monrovia, CA 91016

Entire Report Reviewed By:

Buar Ford

Brian Ford

Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	4
⁵ Sr: Sample Results	5
MB5A-5 L903200-01	5
MB5A-15 L903200-02	7
MB5B-5 L903200-03	9
MB5B-15 L903200-04	11
MB5C-5 L903200-05	13
⁶ Qc: Quality Control Summary	15
Volatile Organic Compounds (MS) by Method TO-15	15
⁷ Gl: Glossary of Terms	20
⁸ Al: Accreditations & Locations	21
⁹ Sc: Chain of Custody	22

SAMPLE SUMMARY

ONE	IΔR	$I \times I \times I$	1()1XI	\/\/ II) ⊢

			Collected by	Collected date/time	Received date/time
MB5A-5 L903200-01 Air			Michael Van Fleet	04/12/17 12:57	04/18/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG971450	2	04/18/17 22:50	04/18/17 22:50	MBF
Volatile Organic Compounds (MS) by Method TO-15	WG971763	25	04/19/17 11:51	04/19/17 11:51	MBF
			Collected by	Collected date/time	Received date/time
MB5A-15 L903200-02 Air			Michael Van Fleet	04/12/17 12:55	04/18/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG971450	2	04/18/17 23:33	04/18/17 23:33	MBF
			Collected by	Collected date/time	Received date/time
MB5B-5 L903200-03 Air			Michael Van Fleet	04/12/17 13:12	04/18/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG971450	2	04/19/17 00:17	04/19/17 00:17	MBF
Volatile Organic Compounds (MS) by Method TO-15	WG971763	25	04/19/17 12:31	04/19/17 12:31	MBF
			Collected by	Collected date/time	Received date/time
MB5B-15 L903200-04 Air			Michael Van Fleet	04/12/17 13:09	04/18/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG971450	2	04/19/17 01:00	04/19/17 01:00	MBF
			Collected by	Collected date/time	Received date/time
MB5C-5 L903200-05 Air			Michael Van Fleet	04/12/17 12:50	04/18/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst

WG971450

WG971763

Volatile Organic Compounds (MS) by Method TO-15

Volatile Organic Compounds (MS) by Method TO-15

date/time

04/19/17 01:43

04/19/17 13:09

2

25

date/time

04/19/17 01:43

04/19/17 13:09

MBF

MBF

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Technical Service Representative

Buar Ford

ONE LAB. NATIONWIDE.

Collected date/time: 04/12/17 12:57

L903200

Volatile Organic Compounds (MS) by Method TO-15

Analista	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	31.2	74.1	169	401		25	WG971763
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND		2	WG971450
Benzene	71-43-2	78.10	0.400	1.28	7.48	23.9		2	WG971450
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG971450
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG971450
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG971450
Bromomethane	74-83-9	94.90	0.400	1.55	ND	ND		2	WG971450
1,3-Butadiene	106-99-0	54.10	4.00	8.85	18.4	40.7		2	WG971450
Carbon disulfide	75-15-0	76.10	0.400	1.24	1.90	5.92		2	WG971450
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG971450
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG971450
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG971450
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG971450
Chloromethane	74-87-3	50.50	0.400	0.826	0.999	2.06		2	WG971450
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND		2	WG971450
Cyclohexane	110-82-7	84.20	0.400	1.38	2.22	7.64		2	WG971450
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG971450
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG971450
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG971450
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG971450
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG971450
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG971450
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG971450
1,1-Dichloroethene	75-35-4	96.90	0.400	1.59	ND	ND		2	WG971450
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG971450
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG971450
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG971450
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG971450
trans-1,3-Dichloropropene	10061-02-6	111	0.400	1.82	ND	ND		2	WG971450
1,4-Dioxane	123-91-1	88.10	0.400	1.44	ND	ND		2	WG971450
Ethanol	64-17-5	46.10	1.26	2.38	24.4	45.9		2	WG971450
Ethylbenzene	100-41-4	106	0.400	1.73	3.87	16.8		2	WG971450
4-Ethyltoluene	622-96-8	120	0.400	1.96	0.903	4.43		2	WG971450
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	ND	ND		2	WG971450
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	0.536	2.65		2	WG971450
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG971450
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG971450
Heptane	142-82-5	100	0.400	1.64	4.57	18.7		2	WG971450
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG971450
n-Hexane	110-54-3	86.20	0.400	1.41	12.6	44.3		2	WG971450
Isopropylbenzene	98-82-8	120.20	0.400	1.97	ND	ND		2	WG971450
Methylene Chloride	75-09-2	84.90	0.400	1.39	0.762	2.65		2	WG971450
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	0.702 ND	ND		2	WG971450
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	15.0	44.1		2	WG971450
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	13.3	54.3		2	WG971450
Methyl methacrylate	80-62-6	100.10	0.400	1.64	ND	ND		2	WG971450
MTBE	1634-04-4	88.10	0.400	1.04	ND	ND		2	WG971450
Naphthalene	91-20-3	128	1.26	6.60	ND	ND ND		2	WG971450
2-Propanol	67-63-0	60.10	2.50	6.15	5.53	13.6		2	WG971450
Propene	115-07-1	42.10	10.0	17.2	459	791		25	WG971450 WG971763
	100-42-5	104	0.400	1.70	0.759	3.23			
Styrene 11.2.2 Totrachloroothano								2	WG971450
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND ND		2	WG971450
Tetrachloroethylene	127-18-4	166	0.400	2.72	ND	ND		2	WG971450
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	ND	ND		2	WG971450
Toluene	108-88-3	92.10	0.400	1.51	40.7	153 ND		2	WG971450
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.33	ND	ND		2	WG971450

Ss

Cn

СQс

Gl

Sc

PROJECT:

17-16-130-01

ONE LAB. NATIONWIDE.

Collected date/time: 04/12/17 12:57

L903200

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG971450
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG971450
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG971450
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	3.41	16.7		2	WG971450
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	1.22	5.99		2	WG971450
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	2.89	13.5		2	WG971450
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG971450
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG971450
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND	<u>J4</u>	2	WG971450
m&p-Xylene	1330-20-7	106	0.800	3.47	15.8	68.3		2	WG971450
o-Xylene	95-47-6	106	0.400	1.73	4.72	20.5		2	WG971450
TPH (GC/MS) Low Fraction	8006-61-9	101	100	413	483	2000		2	WG971450
Tert-Amyl Ethyl Ether	919-94-8	116.20	0.400	1.90	ND	ND		2	WG971450
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		99.8				WG971763
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		100				WG971450

ONE LAB. NATIONWIDE.

Collected date/time: 04/12/17 12:55

L903200

Volatile Organic Compounds (MS) by Method TO-15

Analyte	CAS #	Mol. Wt.	RDL1 ppbv	RDL2 ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	Batch
Acetone	67-64-1	58.10	2.50	5.94	99.2	236		2	WG971450
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND		2	WG971450
Benzene	71-43-2	78.10	0.400	1.28	3.01	9.61		2	WG971450
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG971450
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG971450
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG971450
Bromomethane	74-83-9	94.90	0.400	1.55	ND	ND		2	WG971450
1,3-Butadiene	106-99-0	54.10	4.00	8.85	4.53	10.0		2	WG971450
Carbon disulfide	75-15-0	76.10	0.400	1.24	1.22	3.81		2	WG971450
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG971450
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG971450
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG971450
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG971450
Chloromethane	74-87-3	50.50	0.400	0.826	ND	ND		2	WG971450
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND		2	WG971450
Cyclohexane	110-82-7	84.20	0.400	1.38	0.541	1.86		2	WG971450
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG971450
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG971450
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG971450
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG971450
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG971450
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG971450
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG971450
1,1-Dichloroethene	75-3 1 -3	96.90	0.400	1.59	ND	ND		2	WG971450
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG971450
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG971450
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG971450
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG971450
trans-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG971450
1,4-Dioxane	123-91-1	88.10	0.400	1.44	ND	ND		2	WG971450
Ethanol	64-17-5	46.10	1.26	2.38	16.6	31.2		2	WG971450
Ethylbenzene	100-41-4	106	0.400	1.73	2.01	8.70		2	WG971450
4-Ethyltoluene	622-96-8	120	0.400	1.96	0.496	2.44		2	WG971450
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	0.430 ND	ND		2	WG971450
Dichlorodifluoromethane	75-09- 4 75-71-8	120.92	0.400	1.98	0.440	2.17		2	WG971450 WG971450
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	0.440 ND	ND		2	WG971450 WG971450
1,2-Dichlorotetrafluoroethane	76-13-1 76-14-2	171	0.400	2.80	ND ND	ND		2	
									WG971450
Heptane Hexachloro-1,3-butadiene	142-82-5	100	0.400	1.64	1.57	6.44		2	WG971450
,	87-68-3	261	1.26	13.5	ND	ND 0.16		2	WG971450
n-Hexane	110-54-3	86.20	0.400	1.41	2.60	9.16		2	WG971450
Isopropylbenzene	98-82-8	120.20	0.400	1.97	ND	ND		2	WG971450
Methylene Chloride	75-09-2	84.90	0.400	1.39	ND	ND		2	WG971450
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG971450
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	7.21	21.3		2	WG971450
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	7.17	29.3		2	WG971450
Methyl methacrylate	80-62-6	100.12	0.400	1.64	ND	ND		2	WG971450
MTBE	1634-04-4	88.10	0.400	1.44	ND	ND		2	WG971450
Naphthalene	91-20-3	128	1.26	6.60	ND	ND		2	WG971450
2-Propanol	67-63-0	60.10	2.50	6.15	9.12	22.4		2	WG971450
Propene	115-07-1	42.10	0.800	1.38	46.9	80.8		2	WG971450
Styrene	100-42-5	104	0.400	1.70	0.533	2.27		2	WG971450
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG971450
Tetrachloroethylene	127-18-4	166	0.400	2.72	ND	ND		2	WG971450
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	ND	ND		2	WG971450
Toluene	108-88-3	92.10	0.400	1.51	48.6	183		2	WG971450
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.33	ND	ND		2	WG971450

Ss

Cn

СQс

Gl

Sc

ONE LAB. NATIONWIDE.

Collected date/time: 04/12/17 12:55

L903200

·	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG971450
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG971450
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG971450
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	2.11	10.4		2	WG971450
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	0.614	3.01		2	WG971450
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	0.977	4.56		2	WG971450
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG971450
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG971450
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND	<u>J4</u>	2	WG971450
m&p-Xylene	1330-20-7	106	0.800	3.47	6.50	28.2		2	WG971450
o-Xylene	95-47-6	106	0.400	1.73	1.73	7.50		2	WG971450
TPH (GC/MS) Low Fraction	8006-61-9	101	100	413	428	1770		2	WG971450
Tert-Amyl Ethyl Ether	919-94-8	116.20	0.400	1.90	ND	ND		2	WG971450
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		104				WG971450

ONE LAB. NATIONWIDE.

Collected date/time: 04/12/17 13:12

L903200

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3	<u> </u>		
Acetone	67-64-1	58.10	31.2	74.1	182	432		25	WG971763
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND		2	WG971450
Benzene	71-43-2	78.10	0.400	1.28	6.45	20.6		2	WG971450
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG971450
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG971450
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG971450
Bromomethane	74-83-9	94.90	0.400	1.55	ND	ND		2	WG971450
1,3-Butadiene	106-99-0	54.10	4.00	8.85	27.8	61.5		2	WG971450
Carbon disulfide	75-15-0	76.10	0.400	1.24	2.76	8.61		2	WG971450
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG971450
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG971450
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG971450
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG971450
Chloromethane	74-87-3	50.50	0.400	0.826	1.03	2.13		2	WG971450
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND		2	WG971450
Cyclohexane	110-82-7	84.20	0.400	1.38	3.87	13.3		2	WG971450
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG971450
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG971450
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG971450
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG971450
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG971450
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG971450
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG971450
1,1-Dichloroethene	75-34-3 75-35-4	96.90	0.400	1.59	ND	ND		2	WG971450
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG971450
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND ND	ND		2	WG971450 WG971450
	78-87-5	113	0.400	1.85	ND	ND		2	
1,2-Dichloropropane	10061-01-5	111	0.400	1.82	ND ND	ND		2	WG971450
cis-1,3-Dichloropropene									WG971450
trans-1,3-Dichloropropene	10061-02-6	111	0.400	1.82	ND	ND		2	WG971450
1,4-Dioxane	123-91-1	88.10	0.400	1.44	1.51	5.43		2	WG971450
Ethanol	64-17-5	46.10	1.26	2.38	14.1	26.6		2	WG971450
Ethylbenzene	100-41-4	106	0.400	1.73	2.76	11.9		2	WG971450
4-Ethyltoluene	622-96-8	120	0.400	1.96	0.592	2.91		2	WG971450
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	0.446	2.51		2	WG971450
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	0.600	2.97		2	WG971450
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG971450
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG971450
Heptane	142-82-5	100	0.400	1.64	7.44	30.4		2	WG971450
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG971450
n-Hexane	110-54-3	86.20	0.400	1.41	49.2	174		2	WG971450
Isopropylbenzene	98-82-8	120.20	0.400	1.97	ND	ND		2	WG971450
Methylene Chloride	75-09-2	84.90	0.400	1.39	0.756	2.62		2	WG971450
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG971450
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	14.9	44.0		2	WG971450
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	11.5	47.0		2	WG971450
Methyl methacrylate	80-62-6	100.12	0.400	1.64	ND	ND		2	WG971450
MTBE	1634-04-4	88.10	0.400	1.44	ND	ND		2	WG971450
Naphthalene	91-20-3	128	1.26	6.60	ND	ND		2	WG971450
2-Propanol	67-63-0	60.10	2.50	6.15	4.59	11.3		2	WG971450
Propene	115-07-1	42.10	10.0	17.2	1210	2080		25	WG971763
Styrene	100-42-5	104	0.400	1.70	0.495	2.11		2	WG971450
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG971450
Tetrachloroethylene	127-18-4	166	0.400	2.72	ND	ND		2	WG971450
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	ND	ND		2	WG971450
Toluene	108-88-3	92.10	0.400	1.51	35.0	132		2	WG971450
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.33	ND	ND		2	WG971450

ONE LAB. NATIONWIDE.

Collected date/time: 04/12/17 13:12

L903200

_									
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG971450
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG971450
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG971450
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	1.92	9.45		2	WG971450
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	0.666	3.27		2	WG971450
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	5.86	27.4		2	WG971450
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG971450
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG971450
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND	<u>J4</u>	2	WG971450
m&p-Xylene	1330-20-7	106	0.800	3.47	10.5	45.5		2	WG971450
o-Xylene	95-47-6	106	0.400	1.73	3.13	13.6		2	WG971450
TPH (GC/MS) Low Fraction	8006-61-9	101	100	413	643	2650		2	WG971450
Tert-Amyl Ethyl Ether	919-94-8	116.20	0.400	1.90	ND	ND		2	WG971450
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		93.2				WG971763
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		105				WG971450

ONE LAB. NATIONWIDE.

Collected date/time: 04/12/17 13:09

L903200

Volatile Organic Co	mpounds	(MS) by	Method To	O-15					
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	2.50	5.94	25.3	60.2		2	WG971450
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND		2	WG971450
Benzene	71-43-2	78.10	0.400	1.28	1.28	4.10		2	WG971450
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG971450
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG971450
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG971450
Bromomethane	74-83-9	94.90	0.400	1.55	ND	ND		2	WG971450
1,3-Butadiene	106-99-0	54.10	4.00	8.85	ND	ND		2	WG971450
Carbon disulfide	75-15-0	76.10	0.400	1.24	ND	ND		2	WG971450
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG971450
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG971450
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG971450
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG971450
Chloromethane	74-87-3	50.50	0.400	0.826	0.412	0.851		2	WG971450
2-Chlorotoluene	95-49-8	126	0.400	2.06	0.412 ND	0.831 ND		2	WG971450
	110-82-7	84.20	0.400	1.38	ND	ND		2	WG971450 WG971450
Cyclohexane									
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG971450
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG971450
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG971450
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG971450
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG971450
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG971450
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG971450
1,1-Dichloroethene	75-35-4	96.90	0.400	1.59	ND	ND		2	WG971450
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG971450
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG971450
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG971450
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG971450
trans-1,3-Dichloropropene	10061-02-6	111	0.400	1.82	ND	ND		2	WG971450
1,4-Dioxane	123-91-1	88.10	0.400	1.44	ND	ND		2	WG971450
Ethanol	64-17-5	46.10	1.26	2.38	5.04	9.50		2	WG971450
Ethylbenzene	100-41-4	106	0.400	1.73	1.25	5.41		2	WG971450
4-Ethyltoluene	622-96-8	120	0.400	1.96	ND	ND		2	WG971450
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	ND	ND		2	WG971450
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	0.425	2.10		2	WG971450
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG971450
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG971450
Heptane	142-82-5	100	0.400	1.64	1.83	7.48		2	WG971450
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG971450
n-Hexane	110-54-3	86.20	0.400	1.41	14.2	50.0		2	WG971450
Isopropylbenzene	98-82-8	120.20	0.400	1.97	ND	ND		2	WG971450
Methylene Chloride	75-09-2	84.90	0.400	1.39	0.471	1.63		2	WG971450
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG971450
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	ND	ND		2	WG971450
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	ND	ND		2	WG971450
Methyl methacrylate	80-62-6	100.12	0.400	1.64	ND	ND		2	WG971450
MTBE	1634-04-4	88.10	0.400	1.44	ND	ND		2	WG971450
Naphthalene	91-20-3	128	1.26	6.60	ND	ND		2	WG971450
2-Propanol	67-63-0	60.10	2.50	6.15	3.32	8.16		2	WG971450
Propene	115-07-1	42.10	0.800	1.38	15.2	26.2		2	WG971450
Styrene	100-42-5	104	0.400	1.70	ND	ND		2	WG971450
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG971450
Tetrachloroethylene	127-18-4	166	0.400	2.72	0.454	3.08		2	WG971450
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	ND	ND		2	WG971450
Toluene	103-33-3	92.10	0.400	1.51	32.1	121		2	WG971450
. J. delie	100 00 0	32.10	0.100	1.51	J2.1	161		_	

120-82-1

1,2,4-Trichlorobenzene

ND

WG971450

ONE LAB. NATIONWIDE.

Collected date/time: 04/12/17 13:09

L903200

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG971450
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG971450
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG971450
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	0.997	4.89		2	WG971450
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	ND	ND		2	WG971450
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	0.604	2.82		2	WG971450
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG971450
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG971450
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND	<u>J4</u>	2	WG971450
m&p-Xylene	1330-20-7	106	0.800	3.47	4.82	20.9		2	WG971450
o-Xylene	95-47-6	106	0.400	1.73	1.48	6.41		2	WG971450
TPH (GC/MS) Low Fraction	8006-61-9	101	100	413	463	1910		2	WG971450
Tert-Amyl Ethyl Ether	919-94-8	116.20	0.400	1.90	ND	ND		2	WG971450
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		106				WG971450

ONE LAB. NATIONWIDE.

Collected date/time: 04/12/17 12:50

L903200

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	31.2	74.1	162	384		25	WG971763
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND		2	WG971450
Benzene	71-43-2	78.10	0.400	1.28	9.89	31.6		2	WG971450
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG971450
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG971450
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG971450
Bromomethane	74-83-9	94.90	0.400	1.55	ND	ND		2	WG971450
1,3-Butadiene	106-99-0	54.10	4.00	8.85	33.1	73.1		2	WG971450
Carbon disulfide	75-15-0	76.10	0.400	1.24	2.45	7.62		2	WG971450
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG971450
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG971450
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG971450
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG971450
Chloromethane	74-87-3	50.50	0.400	0.826	1.49	3.08		2	WG971450
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND		2	WG971450
Cyclohexane	110-82-7	84.20	0.400	1.38	4.96	17.1		2	WG971450
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG971450
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG971450
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG971450
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG971450
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG971450
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG971450
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG971450
1,1-Dichloroethene	75-35-4	96.90	0.400	1.59	ND	ND		2	WG971450
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG971450
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG971450
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG971450
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG971450
trans-1,3-Dichloropropene	10061-02-6	111	0.400	1.82	ND	ND		2	WG971450
1,4-Dioxane	123-91-1	88.10	0.400	1.44	ND	ND		2	WG971450
Ethanol	64-17-5	46.10	1.26	2.38	26.9	50.8		2	WG971450
Ethylbenzene	100-41-4	106	0.400	1.73	4.52	19.6		2	WG971450
4-Ethyltoluene	622-96-8	120	0.400	1.96	0.902	4.43		2	WG971450
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	0.521	2.93		2	WG971450
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	0.621	3.07		2	WG971450
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG971450
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG971450
Heptane	142-82-5	100	0.400	1.64	8.01	32.7		2	WG971450
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG971450
n-Hexane	110-54-3	86.20	0.400	1.41	23.8	83.8		2	WG971450
Isopropylbenzene	98-82-8	120.20	0.400	1.97	ND	ND		2	WG971450
Methylene Chloride	75-09-2	84.90	0.400	1.39	1.01	3.51		2	WG971450
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG971450
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	13.9	40.9		2	WG971450
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	10.0	41.1		2	WG971450
Methyl methacrylate	80-62-6	100.12	0.400	1.64	ND	ND		2	WG971450
MTBE	1634-04-4	88.10	0.400	1.44	ND	ND		2	WG971450
Naphthalene	91-20-3	128	1.26	6.60	ND	ND		2	WG971450
2-Propanol	67-63-0	60.10	2.50	6.15	7.76	19.1		2	WG971450
Propene	115-07-1	42.10	10.0	17.2	1170	2020		25	WG971763
Styrene	100-42-5	104	0.400	1.70	0.807	3.43		2	WG971450
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG971450
Tetrachloroethylene	127-18-4	166	0.400	2.72	ND	ND		2	WG971450
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	ND	ND		2	WG971450
Toluene	108-88-3	92.10	0.400	1.51	45.7	172		2	WG971450

ONE LAB. NATIONWIDE.

Collected date/time: 04/12/17 12:50

L903200

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	0.598	3.25		2	WG971450
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG971450
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG971450
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	2.96	14.5		2	WG971450
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	0.998	4.90		2	WG971450
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	6.27	29.3		2	WG971450
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG971450
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG971450
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND	<u>J4</u>	2	WG971450
m&p-Xylene	1330-20-7	106	0.800	3.47	17.7	76.6		2	WG971450
o-Xylene	95-47-6	106	0.400	1.73	5.42	23.5		2	WG971450
TPH (GC/MS) Low Fraction	8006-61-9	101	100	413	633	2620		2	WG971450
Tert-Amyl Ethyl Ether	919-94-8	116.20	0.400	1.90	ND	ND		2	WG971450
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		89.8				WG971763
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		103				WG971450

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L903200-01,02,03,04,05

Method Blank (MB)				
(MB) R3211773-3 04/18/17	10:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Acetone	U		0.0569	1.25
Allyl Chloride	U		0.0546	0.200
Benzene	U		0.0460	0.200
Benzyl Chloride	U		0.0598	0.200
Bromodichloromethane	U		0.0436	0.200
Bromoform	U		0.0786	0.600
Bromomethane	U		0.0609	0.200
1,3-Butadiene	U		0.0563	2.00
Carbon disulfide	U		0.0544	0.200
Carbon tetrachloride	U		0.0585	0.200
Chlorobenzene	U		0.0601	0.200
Chloroethane	U		0.0489	0.200
Chloroform	U		0.0574	0.200
Chloromethane	U		0.0544	0.200
2-Chlorotoluene	U		0.0605	0.200
Cyclohexane	U		0.0534	0.200
Dibromochloromethane	U		0.0494	0.200
1,2-Dibromoethane	U		0.0185	0.200
1,2-Dichlorobenzene	U		0.0603	0.200
1,3-Dichlorobenzene	U		0.0597	0.200
1,4-Dichlorobenzene	U		0.0557	0.200
1,2-Dichloroethane	U		0.0616	0.200
1,1-Dichloroethane	U		0.0514	0.200
1,1-Dichloroethene	U		0.0490	0.200
cis-1,2-Dichloroethene	U		0.0389	0.200
trans-1,2-Dichloroethene	U		0.0464	0.200
1,2-Dichloropropane	U		0.0599	0.200
cis-1,3-Dichloropropene	U		0.0588	0.200
trans-1,3-Dichloropropene	U		0.0435	0.200
1,4-Dioxane	U		0.0554	0.200
Ethylbenzene	U		0.0506	0.200
4-Ethyltoluene	U		0.0666	0.200
Trichlorofluoromethane	U		0.0673	0.200
Dichlorodifluoromethane	U		0.0601	0.200
1,1,2-Trichlorotrifluoroethane	U		0.0687	0.200
1,2-Dichlorotetrafluoroethane	U		0.0458	0.200
Heptane	U		0.0626	0.200
Hexachloro-1,3-butadiene	U		0.0656	0.630
n-Hexane	U		0.0457	0.200
Isopropylbenzene	U		0.0563	0.200

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L903200-01,02,03,04,05

Method Blank (MB)

(MB) R3211773-3 04/18/17	10:08				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Methylene Chloride	U		0.0465	0.200	
Methyl Butyl Ketone	U		0.0682	1.25	
2-Butanone (MEK)	U		0.0493	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.0650	1.25	
Methyl Methacrylate	U		0.0773	0.200	
MTBE	U		0.0505	0.200	
Naphthalene	U		0.154	0.630	
2-Propanol	0.136	<u>J</u>	0.0882	1.25	
Propene	U		0.0932	0.400	
Styrene	U		0.0465	0.200	
1,1,2,2-Tetrachloroethane	U		0.0576	0.200	
Tetrachloroethylene	U		0.0497	0.200	
Tetrahydrofuran	U		0.0508	0.200	
Toluene	U		0.0499	0.200	
1,2,4-Trichlorobenzene	U		0.148	0.630	
1,1,1-Trichloroethane	U		0.0665	0.200	
1,1,2-Trichloroethane	U		0.0287	0.200	
Trichloroethylene	U		0.0545	0.200	
1,2,4-Trimethylbenzene	U		0.0483	0.200	
1,3,5-Trimethylbenzene	U		0.0631	0.200	
2,2,4-Trimethylpentane	U		0.0456	0.200	
Vinyl chloride	U		0.0457	0.200	
Vinyl Bromide	U		0.0727	0.200	
Vinyl acetate	U		0.0639	0.200	
m&p-Xylene	U		0.0946	0.400	
o-Xylene	U		0.0633	0.200	
Ethanol	U		0.0832	0.630	
TPH (GC/MS) Low Fraction	U		6.91	50.0	
Tert-Amyl Ethyl Ether	U		0.0325	0.200	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3211773-1 04/18/1	LCS) R3211773-1 04/18/17 08:39 • (LCSD) R3211773-2 04/18/17 09:23										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Ethanol	3.75	3.57	4.39	95.3	117	52.0-158			20.5	25	
Propene	3.75	3.97	4.11	106	110	54.0-155			3.53	25	
Dichlorodifluoromethane	3.75	4.75	4.69	127	125	69.0-143			1.22	25	

(S) 1,4-Bromofluorobenzene 100

60.0-140

Dibromochloromethane

1,2-Dibromoethane

3.75

3.75

4.35

4.06

4.38

4.11

116

108

117

110

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L903200-01,02,03,04,05

		*		'	le Duplicate	- (/					
LCS) R3211773-1 04/18/17				LCC Doc	LCCD Doc	Dog Limits	LCC Qualifier	LCCD Qualifica	DDD	DDD Limite	
Analyte	Spike Amount ppbv	ppbv	LCSD Result ppbv	LCS Rec. %	LCSD Rec. %	Rec. Limits %	LCS Qualifier	LCSD Qualifier	кр D %	RPD Limits %	
,2-Dichlorotetrafluoroethane	3.75	4.65	4.57	124	122	70.0-130			1.70	25	
Chloromethane	3.75	3.78	4.08	101	109	70.0-130			7.78	25	
Vinyl chloride	3.75	3.60	3.80	96.0	101	70.0-130			5.46	25	
1,3-Butadiene	3.75	3.80	4.03	101	107	70.0-130			5.87	25	
Bromomethane	3.75	3.27	3.45	87.3	92.0	70.0-130			5.20	25	
Chloroethane	3.75	3.89	4.08	104	109	70.0-130			4.78	25	
Frichlorofluoromethane	3.75	4.34	4.42	116	118	70.0-130			1.83	25	
,1,2-Trichlorotrifluoroethane	3.75	4.28	4.34	114	116	70.0-130			1.42	25	
,1-Dichloroethene	3.75	4.07	4.26	108	114	70.0-130			4.56	25	
,1-Dichloroethane	3.75	4.05	4.24	108	113	70.0-130			4.45	25	
Acetone	3.75	4.04	4.23	108	113	70.0-130			4.42	25	
2-Propanol	3.75	4.13	4.26	110	114	66.0-150			3.17	25	
Carbon disulfide	3.75	3.78	3.94	101	105	70.0-130			4.20	25	
Methylene Chloride	3.75	3.94	4.03	105	108	70.0-130			2.20	25	
MTBE	3.75	4.33	4.43	116	118	70.0-130			2.11	25	
rans-1,2-Dichloroethene	3.75	4.20	4.31	112	115	70.0-130			2.73	25	
n-Hexane	3.75	3.99	4.21	106	112	70.0-130			5.32	25	
/inyl acetate	3.75	5.83	5.84	156	156	70.0-130	<u>J4</u>	<u>J4</u>	0.0200	25	
Methyl Ethyl Ketone	3.75	4.35	4.32	116	115	70.0-130	<u>5-</u>	<u>54</u>	0.690	25	
cis-1,2-Dichloroethene	3.75	4.15	4.25	111	113	70.0-130			2.47	25	
Chloroform	3.75	4.11	4.29	110	115	70.0-130			4.34	25	
Cyclohexane	3.75	4.20	4.26	112	114	70.0-130			1.46	25	
I,1,1-Trichloroethane	3.75	4.35	4.48	116	120	70.0-130			3.05	25	
Carbon tetrachloride	3.75	4.39	4.48	117	120	70.0-130			2.01	25	
Benzene	3.75	4.05	4.04	108	108	70.0-130			0.150	25	
,2-Dichloroethane	3.75	4.35	4.43	116	118	70.0-130			1.77	25	
Heptane	3.75	4.28	4.27	114	114	70.0-130			0.270	25	
Frichloroethylene	3.75	4.01	4.06	107	108	70.0-130			1.30	25	
,2-Dichloropropane	3.75	4.11	4.09	110	109	70.0-130			0.490	25	
,4-Dioxane	3.75	4.16	4.25	111	113	70.0-150			2.15	25	
Rromodichloromethane	3.75	4.10	4.25	115	113	70.0-132			1.07	25	
is-1,3-Dichloropropene	3.75	4.25	4.35	113	116	70.0-130			2.15	25	
-Methyl-2-pentanone (MIBK)	3.75	4.23	4.38	117	117	70.0-130			0.180	25	
oluene	3.75	4.37	4.38	111	112	70.0-142			0.660	25	
rans-1,3-Dichloropropene	3.75	4.32	4.31	115	115	70.0-130			0.260	25	
1,2-Trichloroethane	3.75	4.32	4.19	112	112	70.0-130			0.180	25	
etrachloroethylene	3.75	4.17	4.13	111	113	70.0-130			1.59	25	
Methyl Butyl Ketone	3.75	4.17	4.23	120	121	70.0-150			0.800	25	

0.790

1.19

25 25

70.0-130

70.0-130

2-Chlorotoluene

Tetrahydrofuran

Vinyl Bromide

Isopropylbenzene

Tert-Amyl Ethyl Ether

(S) 1,4-Bromofluorobenzene

Methyl Methacrylate

2,2,4-Trimethylpentane

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L903200-01,02,03,04,05

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(I CS) D2211772 1	0.1/19/17 09.30	• (LCSD) R3211773-2	04/19/17 00:23

' '		,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Chlorobenzene	3.75	3.81	3.85	102	103	70.0-130			1.04	25	
Ethylbenzene	3.75	4.28	4.30	114	115	70.0-130			0.410	25	
m&p-Xylene	7.50	8.80	8.75	117	117	70.0-130			0.630	25	
o-Xylene	3.75	4.36	4.36	116	116	70.0-130			0.0500	25	
Styrene	3.75	4.45	4.38	119	117	70.0-130			1.59	25	
Bromoform	3.75	4.56	4.42	122	118	70.0-130			3.15	25	
1,1,2,2-Tetrachloroethane	3.75	4.17	4.22	111	112	70.0-130			1.01	25	
4-Ethyltoluene	3.75	4.38	4.18	117	111	70.0-130			4.82	25	
1,3,5-Trimethylbenzene	3.75	4.38	4.34	117	116	70.0-130			0.890	25	
1,2,4-Trimethylbenzene	3.75	4.34	4.29	116	114	70.0-130			1.20	25	
1,3-Dichlorobenzene	3.75	4.44	4.19	118	112	70.0-130			5.82	25	
1,4-Dichlorobenzene	3.75	4.01	3.75	107	99.9	70.0-130			6.80	25	
Benzyl Chloride	3.75	4.39	4.30	117	115	70.0-144			2.09	25	
1,2-Dichlorobenzene	3.75	4.02	3.87	107	103	70.0-130			4.03	25	
1,2,4-Trichlorobenzene	3.75	4.22	4.27	113	114	70.0-155			1.10	25	
Hexachloro-1,3-butadiene	3.75	3.94	4.00	105	107	70.0-145			1.63	25	
Naphthalene	3.75	4.07	4.14	109	110	70.0-155			1.78	25	
TPH (GC/MS) Low Fraction	176	210	208	119	118	70.0-130			0.910	25	
Allyl Chloride	3.75	4.20	4.19	112	112	70.0-130			0.120	25	

70.0-130

70.0-130

70.0-140

70.0-130

70.0-130

70.0-130

70.0-130

60.0-140

3.75

3.75

3.75

3.75

3.75

3.75

3.75

4.17

4.26

4.15

4.10

4.05

4.33

4.36

4.12

4.26

4.34

4.23

4.24

4.21

4.29

111

114

111

109

108

115

116

103

110

114

116

113

113

112

114

98.3

1.29

4.39

3.31

4.67

2.75

1.67

0.0100

25

25

25

25

25 25

25

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L903200-01,03,05

Method Blank (MB)

(MB) R3211898-3 04/19/17	09:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Acetone	U		0.0569	1.25
Propene	U		0.0932	0.400
(S) 14-Bromofluorobenzene	98.9			60 0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3211898-1 04/19/17	08:25 • (LCSD)) R3211898-2 (04/19/17 09:06							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Propene	3.75	4.14	4.22	111	112	54.0-155			1.75	25
Acetone	3.75	4.01	4.11	107	110	70.0-130			2.58	25
(S) 14-Bromofluorobenzene				101	101	60 0-140				

GLOSSARY OF TERMS

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J4	The associated batch QC was outside the established quality control range for accuracy.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Ilinois	200008	Oregon	TN200002
ndiana	C-TN-01	Pennsylvania	68-02979
owa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/A					Billing Informat	ion:		-	-				
Convers	Se Conso	He ate			Same	1530			1	An	alysis	Chain of Custod	fy Pageof_
717 S.M	wate Aug	175713			3-11-12				1886			100 I	
Monrovia	G CA 9161	6							当日				
	1100 11000	*							1			The section of the	C-1-E-N-C-E-
Report to: Mich	cul Van E	10-4			Email To:				Su2			12065 Lebanon Rd	
No. of the Control of					muanfle	ect @Conve	rse Consult	ants. com	4	1		Mount Juliet, TN 3 Phone: 615-758-51	858 X2/2/AP
Description: Po	to Podus-	Eastuale	5		City/State Collected: Ec	stuale, Cr	4		Oxygenstrs			Phone: 800-767-58 Fax: 615-758-5859	
Phone: 626-93	er over one	Client Project #	piece cyti		Lab Project #				2				03 200
Carlo Colonia		17-16-13	30-01		87		98.5	Ne	171720475	150	-00-1	F174	4
ollected by (print)	k Tier	Site/Facility ID#	- Albania		P.O. #	-	170		30	MI. C		The second second	
follected by (signal	Van Fleet				~				3	18		Acctnum:	建一种
		11723	? (Lab MUST B		4-1	8-14 Date	Results Needed		Vocs	-		Template:	
milla	Flog	Ne	nct Day to Day	100%		No XYes	Canister	Pressure/Vacuum	5			Prelogin; TSR:	
		X The	ree Day	25%		No Yes			1			PB:	
Sample ID	Samp	le Description		Can #	Date	Time	Initial	Final	5			Shipped Via:	E EDVA 100
1B5A-5				55761849	4-12-17	1257	30	0	×			Rem./Contaminant	
185A-15				2261		1255	30	1	X				-01
1B5B-5				5576757		1312	29	0	×				- 92
1B5B-15				2322		1309	28	0	X				- 03
185C-5				1960		1250	27	0	×				-04
1856-15				2312		1248	30	0	-				-05
B50-5				2066		1303	29	0	X	-	7770		
185 D-15				2058		1301	30		×	-			
185E-5				1920		13 26	30	1	0/4				
BSE-IS				578		1319	29	2	X	-			
				370		1317	0		X				March 15 and
emarks:											Hold #		Market et
linquished by : (Si	gnature)		Date:	Time:	Received by	r: (Signature)		Samples returned vi	a: UPS		Conditi		ise only)
linquished by : (Si	11/11		4-12-1	7 1600		- Filt. 61		Ø€FedEx □ Co	urier 🔲	- 519			
and orange by , (3)	Pusiniel		Date:	Time:	Received by	: (Signature)	15	Temp: °C	Bottles Rec	eived:			
elinquished by : (Si	gnature)		Date:	Time:	Received to	r lab by: (Signatur	al la	Ambar	5		_	eal Intact: Y	_N _NA
	lenia.			111115	12	and by, (Signatur	1	18/13/17	Time:	11-	pH Che	cked: NCF:	V
					1/2	for	27	THIS!	8.4	15			X

	SCIENCES ceipt Form		
Client: CONCOUMCA	SDG#	190,32	00
Cooler Received/Opened On: 4/17/17	Temperature:	ien	
Received By: Dan Edwards	71 mg	Corl	-5,5,000
Signature: Deplease			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?		103	NO
COC Signed / Accurate?	Market Company of the State of	/	and the best of
Bottles arrive intact?			> United and
Correct bottles used?	The Applicant of Tribing Chief, and	-/	Sales and Jan
Sufficient volume sent?	The second secon	All the second	HI WAY
If Applicable	The second supplied to the second		
VOA Zero headspace?			
Preservation Correct / Checked?			

ESC Lab Sciences Non-Conformance Form

Login #: L903200 Cl	ent: 0	Clent: CONCONMCA	Date: 4/18/17	Evaluated by: Troy Dunlap
rea (chi	cann	licable items)		
Non-Comormance (check	1	· · · · · · · · · · · · · · · · ·		
Sample Integrity		Chain of Custody Clarification	ation	
Parameter(s) past holding time	×	Login Clarification Needed		If Broken Container:
Improper		Chain of custody is incomplete	lete	Insufficient packing material around container
Improper container type		Please specify Metals requested.	ested.	Insufficient packing material inside cooler
Improper		Please specify TCLP requested.	sted,	Improper handling by carrier (FedEx / UPS / Courie
Insufficient sample volume.		Received additional samples not listed on coc.	es not listed on coc.	Sample was frozen
Sample is biphasic.		Sample ids on containers do not match ids on coc	lo not match ids on	Container lid not intact
Vials received with headspa	ie.	Trip Blank not received.		If no Chain of Custody:
Broken container		Client did not "X" analysis.		Received by:
Broken container:		Chain of Custody is missing	0.0	Date/Time:
Sufficient sample remains				Temp./Cont. Rec./pH:
				Carrier:
				Tracking#

Login Comments: Did not receive MB5C-15, MB5D-5, MB5D-15, MB5E-5 and MB5E-15.

		-		-		一 の の の の の の の の の の の の の の の の の の の		
Cliant informed hy.	Ilen	>	Fmail	×	Voice Mail	Date:04/18/17	Time:1320	
Cheffichillorinea by.	dan	4	Chinese	-				
			14. 1. 1.	164	47.7			
TSR Initials:bit	CHent Con	tact	VICTAGE V	J UP	in a			

Login Instructions:

MB5C-15, MB5D-5, MB5D-15, MB5E-5, MB5E-15 were received on Thurs 04/13 (fedex_730589475400)

without a COC. Canisters were cleaned, no sample volume remains for analysis.

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

ANALYTICAL REPORT

Converse Consultants - Monrovia, CA

Sample Delivery Group: L904335

Samples Received: 04/22/2017

Project Number: 17-16-130-01

Description: Polopolus - Eastvale

Report To: Michael Van Fleet

717 S. Myrtle Avenue

Monrovia, CA 91016

Entire Report Reviewed By:

Jason Romer

Results rolate only to the items tested or collaboted and are captional as rounded values. This sets report shall not be reproducted, except in full, without written approach of the laboratory. Where applicables, sensing conducted by ISC is performed per guidance provided in laboratory standard operating procedures 060302, 060303, and 060304.

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	4
⁵ Sr: Sample Results	5
MB5C@15 L904335-01	5
MB5D@5 L904335-02	7
MB5D@15 L904335-03	9
MB5E@5 L904335-04	11
MB5E@15 L904335-05	13
⁶ Qc: Quality Control Summary	15
Volatile Organic Compounds (MS) by Method TO-15	15
⁷ Gl: Glossary of Terms	21
⁸ Al: Accreditations & Locations	22
⁹ Sc: Chain of Custody	23

			Collected by	Collected date/time	Received date/time
MB5C@15 L904335-01 Air			M. Van Fleet	04/21/17 10:30	04/22/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG972966	2	04/22/17 20:32	04/22/17 20:32	MJ
Volatile Organic Compounds (MS) by Method TO-15	WG973112	25	04/23/17 18:28	04/23/17 18:28	MBF
			Collected by	Collected date/time	Received date/time
MB5D@5 L904335-02 Air			M. Van Fleet	04/21/17 10:10	04/22/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG972966	2	04/22/17 21:21	04/22/17 21:21	MJ
Volatile Organic Compounds (MS) by Method TO-15	WG973334	200	04/24/17 11:20	04/24/17 11:20	MBF
			Collected by	Collected date/time	Received date/time
MB5D@15 L904335-03 Air			M. Van Fleet	04/21/17 10:05	04/22/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG972966	2	04/22/17 22:10	04/22/17 22:10	MJ
Volatile Organic Compounds (MS) by Method TO-15	WG973334	100	04/24/17 12:02	04/24/17 12:02	MBF
			Collected by	Collected date/time	Received date/time
MB5E@5 L904335-04 Air			M. Van Fleet	04/21/17 09:48	04/22/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG972966	2	04/22/17 22:58	04/22/17 22:58	MJ
Volatile Organic Compounds (MS) by Method TO-15	WG973334	200	04/24/17 12:43	04/24/17 12:43	MBF
			Collected by	Collected date/time	Received date/time
MB5E@15 L904335-05 Air			M. Van Fleet	04/21/17 09:47	04/22/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
·					

WG972966

WG973334

2

25

04/22/17 23:46

04/24/17 13:25

04/22/17 23:46

04/24/17 13:25

MJ

MBF

Volatile Organic Compounds (MS) by Method TO-15

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 04/21/17 10:30

904335

- Volume Organic Co	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte	CAS#	IVIOI. VVI.	ppbv	ug/m3	ppbv	ug/m3	Quaimer	Dilution	Datell
Acetone	67-64-1	58.10	2.50	5.94	84.4	201		2	WG972966
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND		2	WG972966
Benzene	71-43-2	78.10	0.400	1.28	3.77	12.0		2	WG972966
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG972966
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG972966
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG972966
Bromomethane	74-83-9	94.90	0.400	1.55	ND	ND		2	WG972966
1,3-Butadiene	106-99-0	54.10	4.00	8.85	16.9	37.4		2	WG972966
Carbon disulfide	75-15-0	76.10	0.400	1.24	2.12	6.61		2	WG972966
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG972966
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG972966
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG972966
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG972966
Chloromethane	74-87-3	50.50	0.400	0.826	0.463	0.955	<u>J4</u>	2	WG972966
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND	_	2	WG972966
Cyclohexane	110-82-7	84.20	0.400	1.38	1.03	3.54		2	WG972966
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG972966
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG972966
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG972966
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG972966
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG972966
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG972966
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG972966
1,1-Dichloroethene	75-35-4	96.90	0.400	1.59	ND	ND		2	WG972966
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG972966
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG972966
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG972966
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG972966
trans-1,3-Dichloropropene	10061-01-3	111	0.400	1.82	ND	ND		2	WG972966
1,4-Dioxane	123-91-1	88.10	0.400	1.44	0.434	1.56		2	WG972966
Ethanol	64-17-5	46.10	1.26	2.38	28.4	53.6		2	WG972966
Ethylbenzene	100-41-4	106	0.400	1.73	1.63	7.09		2	WG972966
4-Ethyltoluene	622-96-8	120	0.400	1.75	ND	ND		2	WG972966
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	ND ND	ND		2	WG972966
	75-09- 4 75-71-8	120.92	0.400	1.98	ND	ND		2	WG972966
Dichlorodifluoromethane	76-13-1	187.40	0.400	3.07	ND ND	ND			WG972966 WG972966
1,1,2-Trichlorotrifluoroethane								2	
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG972966
Heptane	142-82-5	100	0.400	1.64	2.53	10.4		2	WG972966
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG972966
n-Hexane	110-54-3	86.20	0.400	1.41	5.41	19.1		2	WG972966
Isopropylbenzene	98-82-8	120.20	0.400	1.97	0.772	3.80		2	WG972966
Methylene Chloride	75-09-2	84.90	0.400	1.39	ND	ND		2	WG972966
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG972966
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	10.1	29.7		2	WG972966
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	6.99	28.6		2	WG972966
Methyl methacrylate	80-62-6	100.12	0.400	1.64	ND	ND		2	WG972966
MTBE	1634-04-4	88.10	0.400	1.44	ND	ND		2	WG972966
Naphthalene	91-20-3	128	1.26	6.60	ND	ND		2	WG972966
2-Propanol	67-63-0	60.10	2.50	6.15	5.48	13.5		2	WG972966
Propene	115-07-1	42.10	10.0	17.2	218	375		25	WG973112
Styrene	100-42-5	104	0.400	1.70	3.18	13.5		2	WG972966
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG972966
Tetrachloroethylene	127-18-4	166	0.400	2.72	3.15	21.4		2	WG972966
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	1.05	3.09		2	WG972966
Toluene	108-88-3	92.10	0.400	1.51	10.8	40.7		2	WG972966
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.33	ND	ND		2	WG972966

ONE LAB. NATIONWIDE.

Collected date/time: 04/21/17 10:30

L904335

	-								
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG972966
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG972966
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG972966
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	3.17	15.5		2	WG972966
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	1.08	5.28		2	WG972966
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	1.03	4.81		2	WG972966
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG972966
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG972966
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND	<u>J4</u>	2	WG972966
m&p-Xylene	1330-20-7	106	0.800	3.47	5.02	21.8		2	WG972966
o-Xylene	95-47-6	106	0.400	1.73	1.47	6.37		2	WG972966
TPH (GC/MS) Low Fraction	8006-61-9	101	100	413	441	1820		2	WG972966
Tert-Amyl Ethyl Ether	919-94-8	116.20	0.400	1.90	ND	ND		2	WG972966
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		102				WG973112
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		103				WG972966

ONE LAB. NATIONWIDE.

Collected date/time: 04/21/17 10:10

904335

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	250	594	819	1950		200	WG973334
Allyl chloride	107-05-1	76.53	0.400	1.25	61.0	191		2	WG972966
Benzene	71-43-2	78.10	0.400	1.28	25.6	81.6		2	WG972966
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG972966
Bromodichloromethane	75-27-4	164	0.400	2.68	1.60	10.7		2	WG972966
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG972966
Bromomethane	74-83-9	94.90	0.400	1.55	0.964	3.74		2	WG972966
1,3-Butadiene	106-99-0	54.10	400	885	ND	ND		200	WG973334
Carbon disulfide	75-15-0	76.10	0.400	1.24	6.49	20.2		2	WG972966
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG972966
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG972966
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG972966
Chloroform	67-66-3	119	0.400	1.95	3.60	17.5		2	WG972966
Chloromethane	74-87-3	50.50	0.400	0.826	ND	ND	<u>J4</u>	2	WG972966
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND	_	2	WG972966
Cyclohexane	110-82-7	84.20	0.400	1.38	4.74	16.3		2	WG972966
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG972966
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG972966
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG972966
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG972966
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG972966
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG972966
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG972966
1,1-Dichloroethene	75-35-4	96.90	0.400	1.59	ND	ND		2	WG972966
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	0.431	1.71		2	WG972966
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG972966
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG972966
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG972966
trans-1,3-Dichloropropene	10061-02-6	111	0.400	1.82	ND	ND		2	WG972966
1,4-Dioxane	123-91-1	88.10	0.400	1.44	ND	ND		2	WG972966
Ethanol	64-17-5	46.10	1.26	2.38	53.1	100		2	WG972966
Ethylbenzene	100-41-4	106	0.400	1.73	9.02	39.1		2	WG972966
4-Ethyltoluene	622-96-8	120	0.400	1.96	4.25	20.8		2	WG972966
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	0.453	2.55		2	WG972966
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	0.519	2.57		2	WG972966
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG972966
1,2-Dichlorotetrafluoroethane	76-13-1 76-14-2	171	0.400	2.80	ND	ND		2	WG972966
Heptane	142-82-5	100	0.400	1.64	33.8	138		2	WG972966
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG972966
n-Hexane	110-54-3	86.20	0.400	1.41	84.3	297		2	WG972966
Isopropylbenzene	98-82-8	120.20	0.400	1.41	0.639	3.14		2	WG972966
Methylene Chloride	75-09-2	84.90	0.400	1.39	0.039 ND	3.14 ND		2	WG972966
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	3.03	12.4		2	WG972966
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	32.4	95.6		2	WG972966
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	10.4	42.8		2	WG972966
Methyl methacrylate	80-62-6	100.12	0.400	1.64	ND	ND ND		2	WG972966
MTBE	1634-04-4	88.10	0.400	1.44	ND	ND		2	WG972966
Naphthalene	91-20-3	128	1.26	6.60	ND ND	ND		2	WG972966
2-Propanol	67-63-0	60.10	2.50	6.15	ND	ND		2	WG972966
Propene	115-07-1	42.10	80.0	138	4770	8210		200	WG973334
Styrene	100-42-5	104	0.400	1.70	4.84	20.6		2	WG972966
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG972966
Tetrachloroethylene	127-18-4	166	0.400	2.72	4.86	33.0		2	WG972966
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	2.08	6.13		2	WG972966
Toluene	108-88-3	92.10	0.400	1.51	63.0	237		2	WG972966
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.33	ND	ND		2	WG972966

ONE LAB. NATIONWIDE.

Collected date/time: 04/21/17 10:10

904335

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG972966
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG972966
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG972966
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	4.58	22.5		2	WG972966
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	1.84	9.05		2	WG972966
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	9.50	44.4		2	WG972966
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG972966
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG972966
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND	<u>J4</u>	2	WG972966
m&p-Xylene	1330-20-7	106	0.800	3.47	27.7	120		2	WG972966
o-Xylene	95-47-6	106	0.400	1.73	7.29	31.6		2	WG972966
TPH (GC/MS) Low Fraction	8006-61-9	101	100	413	2100	8690		2	WG972966
Tert-Amyl Ethyl Ether	919-94-8	116.20	0.400	1.90	ND	ND		2	WG972966
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		92.4				WG973334
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		98.8				WG972966

ONE LAB. NATIONWIDE.

Collected date/time: 04/21/17 10:05

904335

Volatile Organic Compounds (MS) by Method TO-15

Analyte	CAS #	Mol. Wt.	RDL1 ppbv	RDL2 ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	Batch
Acetone	67-64-1	58.10	2.50	5.94	93.1	221		2	WG972966
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND ND		2	WG972966
Benzene	71-43-2	78.10	0.400	1.28	8.30	26.5		2	WG972966
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG972966
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG972966
Bromoform	75-27-4	253	1.20	12.4	ND	ND		2	WG972966
Bromomethane	74-83-9	94.90	0.400	1.55	ND	ND		2	WG972966
1,3-Butadiene	106-99-0	54.10	4.00	8.85	60.3	133		2	WG972966
Carbon disulfide	75-15-0	76.10	0.400	1.24	2.21	6.89		2	WG972966
Carbon disumde Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG972966
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG972966
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG972966
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG972966 WG972966
	74-87-3	50.50	0.400	0.826	ND ND	ND	14	2	
Chloromethane 2-Chlorotoluene	95-49-8	126	0.400	2.06	ND ND	ND	<u>J4</u>	2	WG972966
									WG972966
Cyclohexane	110-82-7	84.20	0.400	1.38	2.26	7.78		2	WG972966
Dibromochloromethane	124-48-1	208	0.400	3.40	ND ND	ND		2	WG972966
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG972966
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG972966
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG972966
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG972966
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG972966
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG972966
1,1-Dichloroethene	75-35-4	96.90	0.400	1.59	ND	ND		2	WG972966
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG972966
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG972966
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG972966
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG972966
trans-1,3-Dichloropropene	10061-02-6	111	0.400	1.82	ND	ND		2	WG972966
1,4-Dioxane	123-91-1	88.10	0.400	1.44	ND	ND		2	WG972966
Ethanol	64-17-5	46.10	1.26	2.38	12.6	23.7		2	WG972966
Ethylbenzene	100-41-4	106	0.400	1.73	3.03	13.1		2	WG972966
4-Ethyltoluene	622-96-8	120	0.400	1.96	1.29	6.34		2	WG972966
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	ND	ND		2	WG972966
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	ND	ND		2	WG972966
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG972966
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG972966
Heptane	142-82-5	100	0.400	1.64	5.68	23.2		2	WG972966
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG972966
n-Hexane	110-54-3	86.20	0.400	1.41	16.4	57.7		2	WG972966
Isopropylbenzene	98-82-8	120.20	0.400	1.97	0.420	2.07		2	WG972966
Methylene Chloride	75-09-2	84.90	0.400	1.39	ND	ND		2	WG972966
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG972966
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	11.7	34.5		2	WG972966
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	8.85	36.2		2	WG972966
Methyl methacrylate	80-62-6	100.12	0.400	1.64	ND	ND		2	WG972966
MTBE	1634-04-4	88.10	0.400	1.44	ND	ND		2	WG972966
Naphthalene	91-20-3	128	1.26	6.60	ND	ND		2	WG972966
2-Propanol	67-63-0	60.10	2.50	6.15	ND	ND		2	WG972966
Propene	115-07-1	42.10	40.0	68.9	433	746		100	WG973334
Styrene	100-42-5	104	0.400	1.70	5.77	24.5		2	WG972966
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG972966
	127-18-4	166	0.400	2.72	4.01	27.2		2	WG972966
	127-10- 1								
Tetrachloroethylene	109-99-9	72.10	0.400	1.18	0.932	2.75		2	WG972966
Tetrachloroethylene Tetrahydrofuran Toluene			0.400 0.400	1.18 1.51	0.932 17.8	2.75 67.0		2	WG972966 WG972966

Ss

Cn

СQс

Gl

Sc

ONE LAB. NATIONWIDE.

Collected date/time: 04/21/17 10:05

L904335

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG972966
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG972966
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG972966
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	1.06	5.22		2	WG972966
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	ND	ND		2	WG972966
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	2.23	10.4		2	WG972966
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG972966
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG972966
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND	<u>J4</u>	2	WG972966
m&p-Xylene	1330-20-7	106	0.800	3.47	6.94	30.1		2	WG972966
o-Xylene	95-47-6	106	0.400	1.73	2.29	9.91		2	WG972966
TPH (GC/MS) Low Fraction	8006-61-9	101	100	413	600	2480		2	WG972966
Tert-Amyl Ethyl Ether	919-94-8	116.20	0.400	1.90	ND	ND		2	WG972966
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		104				WG972966
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		127				WG973334

ONE LAB. NATIONWIDE.

Collected date/time: 04/21/17 09:48

904335

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	250	594	829	1970		200	WG973334
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND		2	WG972966
Benzene	71-43-2	78.10	0.400	1.28	12.6	40.4		2	WG972966
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG972966
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG972966
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG972966
Bromomethane	74-83-9	94.90	0.400	1.55	0.552	2.14		2	WG972966
1,3-Butadiene	106-99-0	54.10	400	885	ND	ND		200	WG973334
Carbon disulfide	75-15-0	76.10	0.400	1.24	4.61	14.3		2	WG972966
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG972966
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG972966
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG972966
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG972966
Chloromethane	74-87-3	50.50	0.400	0.826	ND	ND	<u>J4</u>	2	WG972966
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND		2	WG972966
Cyclohexane	110-82-7	84.20	0.400	1.38	4.10	14.1		2	WG972966
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG972966
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG972966
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG972966
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG972966
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG972966
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG972966
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG972966
1,1-Dichloroethene	75-35-4	96.90	0.400	1.59	ND	ND		2	WG972966
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG972966
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG972966
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG972966
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG972966
trans-1,3-Dichloropropene	10061-02-6	111	0.400	1.82	ND	ND		2	WG972966
1,4-Dioxane	123-91-1	88.10	0.400	1.44	2.98	10.7		2	WG972966
Ethanol	64-17-5	46.10	1.26	2.38	31.2	58.9		2	WG972966
Ethylbenzene	100-41-4	106	0.400	1.73	4.46	19.3		2	WG972966
4-Ethyltoluene	622-96-8	120	0.400	1.96	2.43	11.9		2	WG972966
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	0.428	2.40		2	WG972966
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	0.423	2.09		2	WG972966
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG972966
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG972966
Heptane	142-82-5	100	0.400	1.64	13.1	53.5		2	WG972966
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG972966
n-Hexane	110-54-3	86.20	0.400	1.41	60.8	214		2	WG972966
Isopropylbenzene	98-82-8	120.20	0.400	1.97	ND	ND		2	WG972966
Methylene Chloride	75-09-2	84.90	0.400	1.39	ND	ND		2	WG972966
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG972966
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	39.9	118		2	WG972966
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	6.17	25.3		2	WG972966
Methyl methacrylate	80-62-6	100.12	0.400	1.64	ND	ND		2	WG972966
MTBE	1634-04-4	88.10	0.400	1.44	ND	ND		2	WG972966
Naphthalene	91-20-3	128	1.26	6.60	ND	ND		2	WG972966
2-Propanol	67-63-0	60.10	2.50	6.15	ND	ND		2	WG972966
Propene	115-07-1	42.10	80.0	138	3700	6380		200	WG973334
Styrene	100-42-5	104	0.400	1.70	3.16	13.4		2	WG972966
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG972966
Tetrachloroethylene	127-18-4	166	0.400	2.72	1.28	8.67	<u>B</u>	2	WG972966
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	2.47	7.29		2	WG972966
Toluene	108-88-3	92.10	0.400	1.51	26.3	98.9		2	WG972966
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.33	ND	ND		2	WG972966

ONE LAB. NATIONWIDE.

Collected date/time: 04/21/17 09:48

L904335

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG972966
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	0.627	3.41		2	WG972966
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG972966
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	2.98	14.6		2	WG972966
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	1.06	5.20		2	WG972966
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	5.99	28.0		2	WG972966
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG972966
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG972966
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND	<u>J4</u>	2	WG972966
m&p-Xylene	1330-20-7	106	0.800	3.47	13.2	57.1		2	WG972966
o-Xylene	95-47-6	106	0.400	1.73	4.09	17.7		2	WG972966
TPH (GC/MS) Low Fraction	8006-61-9	101	100	413	1130	4660		2	WG972966
Tert-Amyl Ethyl Ether	919-94-8	116.20	0.400	1.90	ND	ND		2	WG972966
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		92.6				WG973334
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		97.3				WG972966

ONE LAB. NATIONWIDE.

Collected date/time: 04/21/17 09:47

L904335

		. , , ,	2014	2010		- ·		50.00	5
Analyte	CAS #	Mol. Wt.	RDL1 ppbv	RDL2 ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	<u>Batch</u>
Acetone	67-64-1	58.10	2.50	5.94	75.2	179		2	WG972966
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND		2	WG972966
Benzene	71-43-2	78.10	0.400	1.28	4.51	14.4		2	WG972966
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG972966
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG972966
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG972966
Bromomethane	74-83-9	94.90	0.400	1.55	ND	ND		2	WG972966
1,3-Butadiene	106-99-0	54.10	4.00	8.85	16.9	37.4		2	WG972966
Carbon disulfide	75-15-0	76.10	0.400	1.24	2.20	6.84		2	WG972966
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG972966
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG972966
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG972966
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG972966
Chloromethane	74-87-3	50.50	0.400	0.826	ND	ND	<u>J4</u>	2	WG972966
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND	_	2	WG972966
Cyclohexane	110-82-7	84.20	0.400	1.38	1.32	4.53		2	WG972966
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG972966
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG972966
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG972966
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG972966
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG972966
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG972966
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG972966
1,1-Dichloroethene	75-35-4	96.90	0.400	1.59	ND	ND		2	WG972966
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG972966
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG972966
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG972966
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG972966
trans-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG972966
1,4-Dioxane	123-91-1	88.10	0.400	1.44	ND	ND		2	WG972966
Ethanol	64-17-5	46.10	1.26	2.38	22.0	41.5		2	WG972966
Ethylbenzene	100-41-4	106	0.400	1.73	2.13	9.23		2	
•									WG972966
4-Ethyltoluene	622-96-8	120	0.400	1.96	1.43	7.02		2	WG972966
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	ND	ND		2	WG972966
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	ND	ND		2	WG972966
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG972966
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG972966
Heptane	142-82-5	100	0.400	1.64	3.14	12.9		2	WG972966
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG972966
n-Hexane	110-54-3	86.20	0.400	1.41	5.77	20.4		2	WG972966
Isopropylbenzene	98-82-8	120.20	0.400	1.97	ND	ND		2	WG972966
Methylene Chloride	75-09-2	84.90	0.400	1.39	ND	ND		2	WG972966
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG972966
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	5.33	15.7		2	WG972966
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	ND	ND		2	WG972966
Methyl methacrylate	80-62-6	100.12	0.400	1.64	ND	ND		2	WG972966
MTBE	1634-04-4	88.10	0.400	1.44	ND	ND		2	WG972966
Naphthalene	91-20-3	128	1.26	6.60	ND	ND		2	WG972966
2-Propanol	67-63-0	60.10	2.50	6.15	ND	ND		2	WG972966
Propene	115-07-1	42.10	10.0	17.2	146	251		25	WG973334
Styrene	100-42-5	104	0.400	1.70	2.87	12.2		2	WG972966
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG972966
Tetrachloroethylene	127-18-4	166	0.400	2.72	0.908	6.16	<u>B</u>	2	WG972966
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	1.04	3.06		2	WG972966
Toluene	108-88-3	92.10	0.400	1.51	12.4	46.7		2	WG972966
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.33	ND	ND		2	WG972966

ONE LAB. NATIONWIDE.

Collected date/time: 04/21/17 09:47

L904335

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG972966
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG972966
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG972966
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	2.08	10.2		2	WG972966
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	0.729	3.58		2	WG972966
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	1.88	8.80		2	WG972966
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG972966
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG972966
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND	<u>J4</u>	2	WG972966
m&p-Xylene	1330-20-7	106	0.800	3.47	6.21	26.9		2	WG972966
o-Xylene	95-47-6	106	0.400	1.73	1.86	8.07		2	WG972966
TPH (GC/MS) Low Fraction	8006-61-9	101	100	413	254	1050		2	WG972966
Tert-Amyl Ethyl Ether	919-94-8	116.20	0.400	1.90	ND	ND		2	WG972966
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		71.0				WG973334
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		95.2				WG972966

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L904335-01,02,03,04,05

Method Blank (MB)

Method Blank (MB)					
(MB) R3212746-3 04/22/17	7 10:30				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Acetone	U		0.0569	1.25	
Allyl Chloride	U		0.0546	0.200	
Benzene	U		0.0460	0.200	
Benzyl Chloride	U		0.0598	0.200	
Bromodichloromethane	U		0.0436	0.200	
Bromoform	U		0.0786	0.600	
Bromomethane	U		0.0609	0.200	
1,3-Butadiene	U		0.0563	2.00	
Carbon disulfide	U		0.0544	0.200	
Carbon tetrachloride	U		0.0585	0.200	
Chlorobenzene	U		0.0601	0.200	
Chloroethane	U		0.0489	0.200	
Chloroform	U		0.0574	0.200	
Chloromethane	U		0.0544	0.200	
2-Chlorotoluene	U		0.0605	0.200	
Cyclohexane	U		0.0534	0.200	
Dibromochloromethane	U		0.0494	0.200	
1,2-Dibromoethane	U		0.0185	0.200	
1,2-Dichlorobenzene	U		0.0603	0.200	
1,3-Dichlorobenzene	U		0.0597	0.200	
1,4-Dichlorobenzene	U		0.0557	0.200	
1,2-Dichloroethane	U		0.0616	0.200	
1,1-Dichloroethane	U		0.0514	0.200	
1,1-Dichloroethene	U		0.0490	0.200	
cis-1,2-Dichloroethene	U		0.0389	0.200	
trans-1,2-Dichloroethene	U		0.0464	0.200	
1,2-Dichloropropane	U		0.0599	0.200	
cis-1,3-Dichloropropene	U		0.0588	0.200	
trans-1,3-Dichloropropene	U		0.0435	0.200	
1,4-Dioxane	U		0.0554	0.200	
Ethylbenzene	U		0.0506	0.200	
4-Ethyltoluene	U		0.0666	0.200	
Trichlorofluoromethane	U		0.0673	0.200	
Dichlorodifluoromethane	U		0.0601	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0687	0.200	
1,2-Dichlorotetrafluoroethane	U		0.0458	0.200	
Heptane	U		0.0626	0.200	
Hexachloro-1,3-butadiene	U		0.0656	0.630	
n-Hexane	U		0.0457	0.200	
Isopropylbenzene	U		0.0563	0.200	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L904335-01,02,03,04,05

Method Blank (MB)

(MB) R3212746-3 04/22/17	7 10:30				_
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Methylene Chloride	U		0.0465	0.200	
Methyl Butyl Ketone	U		0.0682	1.25	
2-Butanone (MEK)	U		0.0493	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.0650	1.25	
Methyl Methacrylate	U		0.0773	0.200	
MTBE	U		0.0505	0.200	
Naphthalene	U		0.154	0.630	
2-Propanol	U		0.0882	1.25	
Styrene	U		0.0465	0.200	
1,1,2,2-Tetrachloroethane	U		0.0576	0.200	
Tetrachloroethylene	0.101	<u>J</u>	0.0497	0.200	
Tetrahydrofuran	U		0.0508	0.200	
Toluene	U		0.0499	0.200	
1,2,4-Trichlorobenzene	U		0.148	0.630	
1,1,1-Trichloroethane	U		0.0665	0.200	
1,1,2-Trichloroethane	U		0.0287	0.200	
Trichloroethylene	U		0.0545	0.200	
1,2,4-Trimethylbenzene	U		0.0483	0.200	
1,3,5-Trimethylbenzene	U		0.0631	0.200	
2,2,4-Trimethylpentane	U		0.0456	0.200	
Vinyl chloride	U		0.0457	0.200	
Vinyl Bromide	U		0.0727	0.200	
Vinyl acetate	U		0.0639	0.200	
m&p-Xylene	U		0.0946	0.400	
o-Xylene	U		0.0633	0.200	
Ethanol	U		0.0832	0.630	
TPH (GC/MS) Low Fraction	U		6.91	50.0	
Tert-Amyl Ethyl Ether	U		0.0325	0.200	
(S) 1,4-Bromofluorobenzene	90.3			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3212746-1 04/22/1	7 07:18 • (LCSD) R3212746-2	04/22/17 08:0	6							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Ethanol	3.75	4.15	4.21	111	112	52.0-158			1.46	25	
Dichlorodifluoromethane	3.75	4.41	4.51	118	120	69.0-143			2.30	25	
1,2-Dichlorotetrafluoroethane	3.75	4.51	4.68	120	125	70.0-130			3.67	25	
Chloromethane	3.75	4.73	4.92	126	131	70.0-130		<u>J4</u>	3.97	25	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L904335-01,02,03,04,05

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3212746-1 04/22/17 07:18 • (LCSD) R3212746-2 04/22/17 08:06

(LCS) 1(3212740 1 04/22/1	7 07.10 - (ECSE	1102121702	04/22/1/ 00.0	O							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Vinyl chloride	3.75	4.23	4.27	113	114	70.0-130			1.09	25	
1,3-Butadiene	3.75	4.35	4.56	116	122	70.0-130			4.60	25	
Bromomethane	3.75	4.02	3.94	107	105	70.0-130			2.09	25	
Chloroethane	3.75	4.22	4.08	112	109	70.0-130			3.20	25	
Trichlorofluoromethane	3.75	4.25	4.22	113	112	70.0-130			0.830	25	
1,1,2-Trichlorotrifluoroethane	3.75	4.33	4.28	115	114	70.0-130			1.05	25	
1,1-Dichloroethene	3.75	4.48	4.45	119	119	70.0-130			0.470	25	
11-Dichloroethane	3 75	4 52	4 68	121	125	70.0-130			3 48	25	

А	CCOUNT:				PROJECT:		9	SDG:		DATE/TIME:	PAGE:
Ethylbenzene	3.75	4.37	4.49	117	120	70.0-130			2.60	25	
Chlorobenzene	3.75	4.53	4.41	121	118	70.0-130			2.74	25	
1,2-Dibromoethane	3.75	4.50	4.34	120	116	70.0-130			3.57	25	
Dibromochloromethane	3.75	4.40	4.31	117	115	70.0-130			2.07	25	
Methyl Butyl Ketone	3.75	4.91	4.85	131	129	70.0-150			1.11	25	
Tetrachloroethylene	3.75	4.41	4.10	118	109	70.0-130			7.25	25	
1,1,2-Trichloroethane	3.75	4.48	4.20	120	112	70.0-130			6.58	25	
trans-1,3-Dichloropropene	3.75	4.65	4.30	124	115	70.0-130			7.69	25	
Toluene	3.75	4.55	4.42	121	118	70.0-130			2.85	25	
4-Methyl-2-pentanone (MIBK)	3.75	4.99	4.84	133	129	70.0-142			3.03	25	
cis-1,3-Dichloropropene	3.75	4.69	4.48	125	119	70.0-130			4.47	25	
Bromodichloromethane	3.75	4.63	4.31	123	115	70.0-130			7.11	25	
1,4-Dioxane	3.75	4.50	4.53	120	121	70.0-152			0.500	25	
1,2-Dichloropropane	3.75	4.59	4.43	122	118	70.0-130			3.44	25	
Trichloroethylene	3.75	4.45	4.17	119	111	70.0-130			6.61	25	
Heptane	3.75	4.89	4.74	130	126	70.0-130			3.03	25	
1,2-Dichloroethane	3.75	4.65	4.49	124	120	70.0-130			3.51	25	
Benzene	3.75	4.45	4.30	119	115	70.0-130			3.55	25	
Carbon tetrachloride	3.75	4.27	4.29	114	114	70.0-130			0.520	25	
1,1,1-Trichloroethane	3.75	4.32	4.39	115	117	70.0-130			1.64	25	
Cyclohexane	3.75	4.31	4.39	115	117	70.0-130			1.70	25	
Chloroform	3.75	4.47	4.54	119	121	70.0-130			1.44	25	
cis-1,2-Dichloroethene	3.75	4.55	4.74	121	126	70.0-130			4.24	25	
Methyl Ethyl Ketone	3.75	4.60	4.75	123	127	70.0-130			3.16	25	
Vinyl acetate	3.75	4.89	5.08	131	135	70.0-130	<u>J4</u>	<u>J4</u>	3.70	25	
n-Hexane	3.75	4.55	4.66	121	124	70.0-130			2.34	25	
trans-1,2-Dichloroethene	3.75	4.41	4.45	118	119	70.0-130			0.950	25	
MTBE	3.75	4.46	4.50	119	120	70.0-130			0.990	25	
Methylene Chloride	3.75	4.61	4.68	123	125	70.0-130			1.48	25	
Carbon disulfide	3.75	4.36	4.43	116	118	70.0-130			1.70	25	
2-Propanol	3.75	4.58	4.62	122	123	66.0-150			0.940	25	
Acetone	3.75	4.71	4.70	126	125	70.0-130			0.190	25	
1,1-Dichloroethane	3.75	4.52	4.68	121	125	70.0-130			3.48	25	
1,1-Dichloroethene	3.75	4.48	4.45	119	119	70.0-130			0.470	25	
1,1,2-Trichlorotrifluoroethane	3.75	4.33	4.28	115	114	70.0-130			1.05	25	
Trichlorofluoromethane	3.75	4.25	4.22	113	112	70.0-130			0.830	25	
Chloroethane	3.75	4.22	4.08	112	109	70.0-130			3.20	25	
Bromomethane	3.75	4.02	3.94	107	105	70.0-130			2.09	25	
1,3-Butadiene	3.75	4.35	4.56	116	122	70.0-130			4.60	25	
Vinyl chloride	3.75	4.23	4.27	113	114	70.0-130			1.09	25	

(S) 1,4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L904335-01,02,03,04,05

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

// CC\ D221274C 1	04/22/17 07:18 • (1	CCD) D221274C 2	04/22/17 00:00
11 L STR3/1//40-1	04//////0/18 • 11	U NI	U4///// U8:Uh

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
m&p-Xylene	7.50	8.38	8.64	112	115	70.0-130			3.15	25	
o-Xylene	3.75	4.22	4.25	113	113	70.0-130			0.550	25	
Styrene	3.75	4.51	4.38	120	117	70.0-130			3.02	25	
Bromoform	3.75	4.23	4.37	113	116	70.0-130			3.23	25	
1,1,2,2-Tetrachloroethane	3.75	4.34	4.28	116	114	70.0-130			1.43	25	
4-Ethyltoluene	3.75	4.25	4.11	113	110	70.0-130			3.46	25	
1,3,5-Trimethylbenzene	3.75	4.36	4.12	116	110	70.0-130			5.61	25	
1,2,4-Trimethylbenzene	3.75	4.30	4.08	115	109	70.0-130			5.39	25	
1,3-Dichlorobenzene	3.75	4.09	4.02	109	107	70.0-130			1.82	25	
1,4-Dichlorobenzene	3.75	4.06	4.28	108	114	70.0-130			5.17	25	
Benzyl Chloride	3.75	3.89	4.18	104	111	70.0-144			7.08	25	
1,2-Dichlorobenzene	3.75	3.64	3.72	97.1	99.1	70.0-130			2.05	25	
1,2,4-Trichlorobenzene	3.75	3.85	4.15	103	111	70.0-155			7.40	25	
Hexachloro-1,3-butadiene	3.75	3.77	3.87	100	103	70.0-145			2.80	25	
Naphthalene	3.75	3.96	4.35	106	116	70.0-155			9.26	25	
TPH (GC/MS) Low Fraction	176	204	208	116	118	70.0-130			2.07	25	
Allyl Chloride	3.75	4.66	4.77	124	127	70.0-130			2.36	25	
2-Chlorotoluene	3.75	4.42	4.26	118	114	70.0-130			3.49	25	
Methyl Methacrylate	3.75	4.77	4.43	127	118	70.0-130			7.32	25	
Tetrahydrofuran	3.75	4.72	4.87	126	130	70.0-140			3.01	25	
2,2,4-Trimethylpentane	3.75	4.58	4.71	122	126	70.0-130			2.75	25	
Vinyl Bromide	3.75	4.29	4.17	115	111	70.0-130			3.00	25	
Isopropylbenzene	3.75	3.91	4.06	104	108	70.0-130			3.55	25	
Tert-Amyl Ethyl Ether	3.75	4.46	4.26	119	114	70.0-130			4.41	25	

60.0-140

98.3

102

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L904335-01

Method Blank (MB)

(MB) R3212842-3 04/23/17	7 09:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Propene	U		0.0932	0.400
(S) 1,4-Bromofluorobenzene	99.0			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3212842-1 04/23/1	7 07:43 • (LCSE) R3212842-2	04/23/17 08:2	7						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Propene	3.75	4.39	4.36	117	116	54.0-155			0.820	25
(S) 1.4-Rromofluorobenzene				96.3	97 9	60 0-140				

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L904335-02,03,04,05

Method Blank (MB)

(MB) R3213014-3 04/24/17	10:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Acetone	U		0.0569	1.25
1,3-Butadiene	U		0.0563	2.00
Propene	U		0.0932	0.400
(S) 1,4-Bromofluorobenzene	93.0			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Propene	3.75	4.36	3.77	116	100	54.0-155			14.5	25
1,3-Butadiene	3.75	4.37	4.23	117	113	70.0-130			3.25	25
Acetone	3.75	3.56	3.65	95.0	97.4	70.0-130			2.42	25
(S) 1,4-Bromofluorobenzene	è			94.1	94.0	60.0-140				

GLOSSARY OF TERMS

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J4	The associated batch QC was outside the established quality control range for accuracy.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERTO086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crvpto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ompany Name/A	ddress:				Billing Information	Billing Information:					Chain of Cust	ody Pageof
	Converse Consultants		Some	97		M.	ECC					
	717 S. Myrtle Ave			- Comme					9	LUC		
Monrovia	G CA SIA	11			E. 6				70-		1	5-C-I-E-N-C-E-
	CA 110	7.0			10				25		12055 Lebanon	Rd
eport to: Michael					muon fla	et e Conve	rse Consil	tonts. Con	100		Mount Juliet, T Phone: 615-758 Phone: 800-767 Fax: 615-758-51	1-5858 1-5859
roject Description: Pol	opolus -	Eastvale				astrale C	A		Oxygenotrs		1 # 0	10435
		Client Project #			Lab Project #				o -	1000		97
hone:626-93	60-1200	17-16-130-	ol						\$	No. of Contract of		
Collected by (prin		Site/Facility ID #			17-16-	130-01		133	s phas	10000	Acctnum: Template:	
Collected by (sign	ature):	The state of the s	Lab MUST Be Notifie		Mondey	4-24-17	Results Needed		3	201	Prelogin:	
mil Va	Two Day50%		00%	Email?	Date Results Needed Monday 4-24-17 Email?No XYes		ster Pressure/Vacuum			TSR: PB:		
0.0			Day			1 30	Initial	Final	To-15		Shipped Vi	
Sample ID	Sar	mple Description		an#	Date	Time	1.510/22/03	2	× ×		Rem./Contam	
MB 5C elg		· Carried	149		7-21-17	10:30	30	3	1			01
MB5De5			124	-		10:/0	29	2	×			83
MB SDeis	7	10 2 de la constante de la con	60			10:65	29	3	X			01
MBSECS			132			9:48	30					
MB5Eeis			230	9	*	9:47	30	2	Y			of .
-5						1 7 7 7					137	
	No. of the last	3 8 2		En	a la		- 46-				1 1	
N. 77-1					1967.00	(A) - (A)						
F-1/												
Remarks:									American .		old#	
Relinquished by : (Signature) Pull Value: Relinquished by : (Signature) Relinquished by : (Signature) Date: Time: 4-21-17 Date: Time:			d by: (Signature)		Samples returned		Co	ondition:	(lab use only)			
			d by: (Signature)	1 1		Bottles Reco	eived:					
Reiniquisned by	. (algustule)				515		1	Ambient	5		OC Seal Intact:	Y N NA
Relinquished by	y:(Signature)	1	Date:	Time:	Receive	d for lab by: (Signat	ure)	Date: 4/22/	7 9.0	00	H Checked:	NCF:

	ESC LAB SCIENC Cooler Receipt F			
Client:	CONCORMER	SDG#	9013	35
Cooler Received/Opened On: 4/		Temperature: An	bient	100
Received By: Dan Edwards				
Signature: De la	nd	1		
	18	NP	Yes	No
Receipt Check List			1 1 1	
COC Seal Present / Intact?	The second second second	and the second ball of the later of the	1	- Habourto
COC Signed / Accurate?		Three Books and the Grand	1	7.7
Bottles arrive intact?	S. J. Samuel and Market St.		1	
Correct bottles used?	A splant variation		1	10.00
Sufficient volume sent?			-	
If Applicable				
VOA Zero headspace?			1	
Preservation Correct / Checked				

714-449-9937 562-646-1611 805-399-0060 11007 FOREST PLACE Santa Fe Springs, CA 90670 Www.jonesenv.com

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants

Client Address: 222 E. Huntington Drive, Suite 211

Monrovia, CA 91016

Attn: M. Van Fleet

Project: Polopulus Eastvale **Project Address:** 7270 Hamner Avenue

Eastvale, CA

Date Sampled:

Client Ref. No.:

Report date:

JEL Ref. No.:

5/1/2017

5/1/2017

ST-10545

17-16-130-01

Date Received: 5/1/2017 **Date Analyzed:** 5/1/2017

Physical State: Soil Gas

ANALYSES REQUESTED

1. EPA TO-15 – Volatile Organics by GC/MS

Analytical – Soil Gas samples were analyzed using EPA Method TO-15. Instrument Continuing Calibration Verification, QC Reference Standards, and Instrument Blanks were analyzed every 24 hours as prescribed by the method.

Approval:

Marshall Chaffee, MS Organics Supervisor

morrhal Cha

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report Date: 5/1/2017
Client Address: 222 E. Huntington Drive, Suite 211 Jones Ref. No.: ST-10545

Monrovia, CA 91016 Client Ref. No.: 17-16-130-01

Attn: Date Sampled: 5/1/2017

Project: Polopulus Eastvale Date Analyzed: 5/1/2017
Project Address: 7270 Hamner Avenue Physical State: Soil Gas

Eastvale, CA

EPA TO-15 - Volatile Organics by GC/MS in Summa Canister

<u>Sample ID:</u> SV-1 SV-2 SV-3 SV-4 SV-5

Jones ID:	ST-10545-01	ST-10545-02	ST-10545-03	ST-10545-04	ST-10545-05	Reporting Limit	<u>Units</u>
Analytes:							
Acetone	220	140	69	100	130	17	$\mu g/m^3$
Acrolein	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Benzene	27	22	ND	13	9.2	8.3	$\mu g/m^3$
Benzyl chloride	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Bromodichloromethane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Bromoform	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
1,3-Butadiene	27	35	ND	11	ND	8.3	$\mu g/m^3$
2-Butanone (MEK)	67	52	21	36	44	17	$\mu g/m^3$
n-Butylbenzene	ND	ND	ND	ND	ND	17	$\mu g/m^3$
sec-Butylbenzene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
tert-Butylbenzene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Carbon disulfide	30	ND	ND	ND	13	8.3	$\mu g/m^3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Chlorobenzene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Chloroethane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Chloroform	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Chloromethane	ND	ND	ND	ND	ND	50	$\mu g/m^3$
Cyclohexane	11	8.5	ND	ND	ND	8.3	$\mu g/m^3$
Dibromochloromethane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
1,2-Dibromoethane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	17	$\mu g/m^3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	17	$\mu g/m^3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	17	$\mu g/m^3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
1,2-Dichloroethane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
1,1-Dichloroethene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
1,4-Dioxane	ND	ND	ND	ND	ND	8	$\mu g/m^3$
Ethanol	ND	25	ND	ND	ND	83	$\mu g/m^3$
Ethyl acetate	ND	ND	ND	37	42	25	$\mu g/m^3$
Ethylbenzene	12	ND	ND	ND	ND	8.3	$\mu g/m^3$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA TO-15 – Volatile Organics by GC/MS in Summa Canister

Sample ID:	SV-1	SV-2	SV-3	SV-4	SV-5
------------	------	------	------	------	------

Jones ID:	ST-10545-01	ST-10545-02	ST-10545-03	ST-10545-04	ST-10545-05	Reporting Limit	Units
Analytes:						200701111111111111111111111111111111111	
4-Ethyltoluene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Freon 11	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Freon 12	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Freon 113	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Freon 114	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
n-Heptane	205	ND	ND	ND	ND	60	$\mu g/m^3$
Hexachloro-1,3-butadiene	ND	ND	ND	ND	ND	17	$\mu g/m^3$
n-Hexane	ND	ND	ND	ND	ND	60	$\mu g/m^3$
2-Hexanone (MBK)	ND	ND	ND	ND	ND	17	$\mu g/m^3$
Isopropyl alcohol	ND	ND	ND	ND	ND	25	$\mu g/m^3$
Isopropylbenzene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
4-Isopropyltoluene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
4-Methyl-2-pentanone (MIBK)	100	56	22	56	61	8.3	$\mu g/m^3$
Methylene chloride	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Methylmethacrylate	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Naphthalene	ND	21	ND	19	18	17	$\mu g/m^3$
n-Pentane	ND	ND	ND	ND	ND	60	$\mu g/m^3$
n-Propylbenzene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Propylene	30	200	21	49	52	17	$\mu g/m^3$
Styrene	ND	10	19	9.4	12	8.3	$\mu g/m^3$
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Tetrachloroethene	8.4	ND	ND	ND	ND	8.3	$\mu g/m^3$
Tetrahydrofuran	ND	ND	ND	ND	ND	17	$\mu g/m^3$
Toluene	190	180	80	270	420	8.3	$\mu g/m^3$
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Trichloroethene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
1,2,4-Trimethylbenzene	21	ND	ND	ND	ND	17	$\mu g/m^3$
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	17	$\mu g/m^3$
Vinyl acetate	ND	ND	ND	ND	ND	17	$\mu g/m^3$
Vinyl chloride	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
m,p-Xylene	23	17	12	22	14	8.3	$\mu g/m^3$
o-Xylene	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
MTBE	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Ethyl-tert-butylether	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
Di-isopropylether	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
tert-Amylmethylether	ND	ND	ND	ND	ND	8.3	$\mu g/m^3$
tert-Butylalcohol	ND	ND	ND	ND	ND	50	$\mu g/m^{\scriptscriptstyle 3}$
Dilution Factor	1	1	1	1	1		
Surrogate Recovery: 4-Bromofluorobenzene	110%	111%	111%	110%	109%	<u>QC Limi</u> 60 - 140	
PIOIIIOHUOIOUCHZCHC						00 - 140	
	ST-050117- IndoorAir-	ST-050117- IndoorAir-	ST-050117- IndoorAir-	ST-050117- IndoorAir-	ST-050117- IndoorAir-		
ND N D	CHECKS	CHECKS	CHECKS	CHECKS	CHECKS		

ND = Not Detected

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report Date: 5/1/2017
Client Address: 222 E. Huntington Drive, Suite 211 Jones Ref. No.: ST-10545

 222 E. Huntington Drive, Suite 211
 Jones Ref. No.:
 ST-10545

 Monrovia, CA 91016
 Client Ref. No.:
 17-16-130-01

Attn: M. Van Fleet Date Sampled: 5/1/2017

Project: Polopulus Eastvale Date Analyzed: 5/1/2017
Project Address: 7270 Hamner Avenue Physical State: Soil Gas

Eastvale, CA

EPA TO-15 - Volatile Organics by GC/MS in Summa Canister

Sample ID: SV-6 SV-Ambient

Jones ID:	ST-10545-06	ST-10545-07	Reporting Limit	<u>Units</u>
Analytes:				
Acetone	140	ND	17	$\mu g/m^3$
Acrolein	ND	ND	8.3	$\mu g/m^3$
Benzene	28	ND	8.3	$\mu g/m^3$
Benzyl chloride	ND	ND	8.3	$\mu g/m^3$
Bromodichloromethane	ND	ND	8.3	$\mu g/m^3$
Bromoform	ND	ND	8.3	$\mu g/m^3$
1,3-Butadiene	26	ND	8.3	$\mu g/m^3$
2-Butanone (MEK)	46	ND	17	$\mu g/m^3$
n-Butylbenzene	ND	ND	17	$\mu g/m^3$
sec-Butylbenzene	ND	ND	8.3	$\mu g/m^3$
tert-Butylbenzene	ND	ND	8.3	$\mu g/m^3$
Carbon disulfide	22	ND	8.3	$\mu g/m^3$
Carbon tetrachloride	ND	ND	8.3	$\mu g/m^3$
Chlorobenzene	ND	ND	8.3	$\mu g/m^3$
Chloroethane	ND	ND	8.3	$\mu g/m^3$
Chloroform	ND	ND	8.3	$\mu g/m^3$
Chloromethane	ND	ND	50	$\mu g/m^3$
Cyclohexane	9.8	ND	8.3	$\mu g/m^3$
Dibromochloromethane	ND	ND	8.3	$\mu g/m^3$
1,2-Dibromo-3-chloropropane	ND	ND	8.3	$\mu g/m^3$
1,2-Dibromoethane	ND	ND	8.3	$\mu g/m^3$
1,2-Dichlorobenzene	ND	ND	17	$\mu g/m^3$
1,3-Dichlorobenzene	ND	ND	17	$\mu g/m^3$
1,4-Dichlorobenzene	ND	ND	17	$\mu g/m^3$
1,1-Dichloroethane	ND	ND	8.3	$\mu g/m^3$
1,2-Dichloroethane	ND	ND	8.3	$\mu g/m^3$
1,1-Dichloroethene	ND	ND	8.3	$\mu g/m^3$
cis-1,2-Dichloroethene	ND	ND	8.3	$\mu g/m^3$
trans-1,2-Dichloroethene	ND	ND	8.3	$\mu g/m^3$
1,4-Dioxane	ND	ND	8	$\mu g/m^3$
Ethanol	ND	ND	83	$\mu g/m^3$
Ethyl acetate	28	ND	25	$\mu g/m^3$
Ethylbenzene	13	ND	8.3	$\mu g/m^3$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA TO-15 – Volatile Organics by GC/MS in Summa Canister

Sample ID:	SV-6	SV-Ambient
Sample 1D.	B V - U	5 V-Ambient

ND = Not Detected

Jones ID:	ST-10545-06 ST-10545-07		Reporting Limit	<u>Units</u>
Analytes:				
4-Ethyltoluene	ND	ND	8.3	μg/m³
Freon 11	ND	ND	8.3	μg/m³
Freon 12	ND	ND	8.3	μg/m³
Freon 113	ND	ND	8.3	μg/m³
Freon 114	ND	ND	8.3	μg/m³
n-Heptane	ND	ND	60	μg/m³
Hexachloro-1,3-butadiene	ND	ND	17	μg/m³
n-Hexane	ND	ND	60	μg/m³
2-Hexanone (MBK)	ND	ND	17	μg/m³
Isopropyl alcohol	ND	ND	25	μg/m³
Isopropylbenzene	ND	ND	8.3	μg/m³
4-Isopropyltoluene	9.2	ND	8.3	μg/m³
4-Methyl-2-pentanone (MIBK)	110	ND	8.3	μg/m³
Methylene chloride	ND	ND	8.3	μg/m³
Methylmethacrylate	ND	ND	8.3	μg/m³
Naphthalene	ND	ND	17	μg/m³
n-Pentane	ND	ND		μg/m³
n-Propylbenzene	ND	ND	8.3	μg/m³
Propylene	150	ND	17	μg/m³
Styrene	26	ND	8.3	μg/m³
1,1,1,2-Tetrachloroethane	ND	ND	8.3	μg/m³
1,1,2,2-Tetrachloroethane	ND	ND	8.3	μg/m³
Tetrachloroethene	ND	ND	8.3	μg/m³
Tetrahydrofuran	ND	ND	17	μg/m³
Toluene	360	ND	8.3	μg/m³
1,1,1-Trichloroethane	ND	ND		μg/m³
1,1,2-Trichloroethane	ND	ND	8.3	μg/m³
Trichloroethene	ND	ND	8.3	μg/m³
1,2,4-Trimethylbenzene	ND	ND	17	μg/m³
1,3,5-Trimethylbenzene	ND	ND	17	μg/m³
Vinyl acetate	ND	ND	17	μg/m³
Vinyl chloride	ND	ND	8.3	μg/m³
m,p-Xylene	26	ND	8.3	μg/m³
o-Xylene	8.4	ND	8.3	μg/m³
MTBE	ND	ND	8.3	μg/m³
Ethyl-tert-butylether	ND	ND	8.3	μg/m³
Di-isopropylether	ND	ND	8.3	μg/m³
tert-Amylmethylether	ND	ND	8.3	μg/m³
tert-Butylalcohol	ND	ND	50	μg/m³
Dilution Factor	1	1		
Surrogate Recovery:			QC Limits	
4-Bromofluorobenzene	110%	109%	60 - 140	
	ST-050117-	ST-050117-		
	IndoorAir-	IndoorAir-		
ND N D	CHECKS	CHECKS		

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Converse Consultants Report Date: 5/1/2017
Client Address: 222 E. Huntington Drive, Suite 211 Jones Ref. No.: ST-10545

Monrovia, CA 91016 Client Ref. No.: 17-16-130-01

Attn: Date Sampled: 5/1/2017

Date Received: 5/1/2017
Date Analyzed: 5/1/2017
Physical State: Soil Gas

Eastvale, CA

METHOD

Polopulus Eastvale

7270 Hamner Avenue

Project:

Project Address:

EPA TO-15 - Volatile Organics by GC/MS in Summa Canister

Sample ID: **BLANK** 050117-Jones ID: **Reporting Limit** STMB1 **Units Analytes:** 17 Acetone ND $\mu g/m^3$ Acrolein 8.3 ND $\mu g/m^3$ ND 8.3 $\mu g/m^3$ Benzene $\mu g/m^{\scriptscriptstyle 3}$ ND 8.3 Benzyl chloride ND 8.3 $\mu g/m^3$ Bromodichloromethane ND 8.3 Bromoform $\mu g/m^3$ ND 8.3 1,3-Butadiene $\mu g/m^3$ ND 17 $\mu g/m^{\scriptscriptstyle 3}$ 2-Butanone (MEK) n-Butylbenzene ND 17 $\mu g/m^3$ ND 8.3 $\mu g/m^3$ sec-Butylbenzene ND 8.3 tert-Butylbenzene $\mu g/m^3$ ND 8.3 $\mu g/m^3$ Carbon disulfide Carbon tetrachloride ND 8.3 $\mu g/m^3$ ND 8.3 Chlorobenzene $\mu g/m^3$ ND 8.3 Chloroethane $\mu g/m^3$ ND 8.3 $\mu g/m^3$ Chloroform ND 50 Chloromethane $\mu g/m^3$ ND 8.3 Cyclohexane $\mu g/m^3$ ND 8.3 $\mu g/m^{\scriptscriptstyle 3}$ Dibromochloromethane 1,2-Dibromo-3-chloropropane ND 8.3 $\mu g/m^3$ 1,2-Dibromoethane ND 8.3 $\mu g/m^3$ ND 17 $\mu g/m^3$ 1,2-Dichlorobenzene ND 17 $\mu g/m^3$ 1,3-Dichlorobenzene ND 17 $\mu g/m^3$ 1,4-Dichlorobenzene 8.3 ND 1,1-Dichloroethane $\mu g/m^3$ 1,2-Dichloroethane ND 8.3 $\mu g/m^3$ ND 8.3 $\mu g/m^3$ 1,1-Dichloroethene ND 8.3 cis-1,2-Dichloroethene $\mu g/m^3$ ND 8.3 trans-1,2-Dichloroethene $\mu g/m^3$ ND 8 $\mu g/m^{\scriptscriptstyle 3}$ 1,4-Dioxane 83 Ethanol ND $\mu g/m^3$ ND 25 $\mu g/m^3$ Ethyl acetate ND 8.3 Ethylbenzene $\mu g/m^3$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA TO-15 – Volatile Organics by GC/MS in Summa Canister

Sample ID:	METHOD BLANK		
Jones ID:	050117- STMB1	Reporting Limit	<u>Units</u>
Analytes:			
4-Ethyltoluene	ND	8.3	$\mu g/m^3$
Freon 11	ND	8.3	$\mu g/m^3$
Freon 12	ND	8.3	$\mu g/m^3$
Freon 113	ND	8.3	$\mu g/m^3$
Freon 114	ND	8.3	$\mu g/m^3$
n-Heptane	ND	60	$\mu g/m^3$
Hexachloro-1,3-butadiene	ND	17	$\mu g/m^3$
n-Hexane	ND	60	$\mu g/m^3$
2-Hexanone (MBK)	ND	17	$\mu g/m^3$
Isopropyl alcohol	ND	25	$\mu g/m^3$
Isopropylbenzene	ND	8.3	$\mu g/m^3$
4-Isopropyltoluene	ND	8.3	$\mu g/m^3$
4-Methyl-2-pentanone (MIBK)	ND	8.3	$\mu g/m^3$
Methylene chloride	ND	8.3	$\mu g/m^3$
Methylmethacrylate	ND	8.3	$\mu g/m^3$
Naphthalene	ND	17	$\mu g/m^3$
n-Pentane	ND	60	$\mu g/m^3$
n-Propylbenzene	ND	8.3	$\mu g/m^3$
Propylene	ND	17	$\mu g/m^3$
Styrene	ND	8.3	$\mu g/m^3$
1,1,1,2-Tetrachloroethane	ND	8.3	$\mu g/m^3$
1,1,2,2-Tetrachloroethane	ND	8.3	$\mu g/m^3$
Tetrachloroethene	ND	8.3	$\mu g/m^3$
Tetrahydrofuran	ND	17	$\mu g/m^3$
Toluene	ND	8.3	$\mu g/m^3$
1,1,1-Trichloroethane	ND	8.3	$\mu g/m^3$
1,1,2-Trichloroethane	ND	8.3	$\mu g/m^3$
Trichloroethene	ND	8.3	$\mu g/m^3$
1,2,4-Trimethylbenzene	ND	17	$\mu g/m^3$
1,3,5-Trimethylbenzene	ND	17	$\mu g/m^3$
Vinyl acetate	ND	17	$\mu g/m^3$
Vinyl chloride	ND	8.3	$\mu g/m^3$
m,p-Xylene	ND	8.3	$\mu g/m^3$
o-Xylene	ND	8.3	$\mu g/m^3$
MTBE	ND	8.3	$\mu g/m^3$
Ethyl-tert-butylether	ND	8.3	$\mu g/m^3$
Di-isopropylether	ND	8.3	$\mu g/m^3$
tert-Amylmethylether	ND	8.3	$\mu g/m^3$
tert-Butylalcohol	ND	50	$\mu g/m^3$
Dilution Factor	1		
Surrogate Recovery: 4-Bromofluorobenzene	110%	<u>OC Limit</u> 60 - 140	
T-DIOMONUOLOUGHZEHE		00 - 140	
	ST-050117-		
	IndoorAir- CHECKS		
ND = Not Detected	CILLOIN		

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Converse Consultants Report Date: 5/1/2017

Client Address: 222 E. Huntington Drive, Suite 211 Jones Ref. No.: ST-10545

Monrovia, CA 91016 Client Ref. No.: 17-16-130-01

Attn: M. Van Fleet Date Sampled: 5/1/2017

Project: Polopulus Eastvale Date Analyzed: 5/1/2017
Project Address: 7270 Hamner Avenue Physical State: Soil Gas

Eastvale, CA

EPA TO-15 – Volatile Organics by GC/MS in Summa Canister

050117-STCCVD1

GC#: ST-050117-IndoorAir-CHECKS

050117-STCCV1

Julies ID.	030117-51 CC VI	030117-51CC (D1			
<u>Parameter</u>	CCV Recovery (%)	CCV-Dup Recovery (%)	<u>RPD</u>	Acceptability Range (%)	
Vinyl chloride	102%	108%	5.3%	60-140	
1,1-Dichloroethene	97%	90%	6.8%	60-140	
cis-1,2-Dichloroethene	94%	102%	8.1%	70-130	
1,1,1-Trichloroethane	100%	101%	0.8%	70-130	
Benzene	96%	98%	1.7%	70-130	
Trichloroethene	95%	98%	2.5%	70-130	
Toluene	94%	95%	0.8%	70-130	
Tetrachloroethene	94%	96%	1.7%	70-130	
Chlorobenzene	92%	96%	4.3%	70-130	
Ethylbenzene	93%	92%	0.9%	70-130	
1,2,4-Trimethylbenzene	94%	94%	0.9%	70-130	
Surrogate Recovery:					
4-Bromofluorobenzene	109%	107%		60 - 140	

CCV = Continuing Calibration Verification

Jones ID:

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

P.O. Box 5387 Fullerton, CA 92838 (714) 449-9937 Fax (714) 449-9685

Air Chain-of-Custody Record

Project Address 7270 Eastvale Email M. Van Fleet M. Van Fleet	Ham Ham	732 (O	s reve		Client Project # 17-16-13 Turn Around F Rush 24-4 Rush 72-9 Normal Mobile Lal	Requested: e Attention 8 Hours 6 Hours	Tier II - (I	esults/Defa Results + QC — cer: n-propanol n-pentane 1,1-DFA Helium	Shi	Tier IV - (Data Validat Client specif & Surcharge	fied) 10% S	Surcha	rge_			Number of Containers	JEL Project # ST - 105 85 Page of Lab Use Only Sample Condition as Recieved: Chiled ves no Sealed ves no
Sample ID	Date Collected	Purge Number	Purge Volume	Laboratory Sample ID	Canister ID	Canister Start Pressure	Canister End Pressure	Flow Rate (cc/min)	Sampling Start Time	Sampling End Time	Sample Analysis Date	Sample Analysis Time	TO-15	8260B	Barometric	Magneheli		Remarks & Special Instructions
5V-1	5/1	-	11	ST-10585-01	1511	-30	-2	200	1:35	9:44	2		X					Report to include
SV-2	5/1	-	151	57-10585-12	B2452	-30	-2	200	10:50	11:00			X					1,3- Buta diene
SV-3	5/1	Name .	16.	ST-10585-03	32434	-30	-2	200	1:05	1.15		-	X			911		
SV-4	5/1	-	156	ST HOSESOM	B2435	-30	-1	200	10:33	10:41			X					
SV-5	5/1	-	1,56	ST10584-05	B2440	-30	-2	200	10:16	10:22	5 5		X					
5V-6	5/1	-	1.5	ST 40555 -06	B2454	-30	-\	200	9:55	10:06			X					
8W-Ambient	5/1	-	-	st-105\$5-07	1637	-30	-3	200	9015	9:25		= # 1	X					4
Relinquished By (Signature): Company ON PESSE Relinquished By (Signature):	Onsu	iltan	ts	Date:	1117	Company Received By Company	(Signature):	-	2	Rano	ly G	Date:	14	 	,	Chai	n of C	ry of samples and the signature on this ustody form constitutes authorization to e analyses specificied above under the erms and Conditions set forth